Catalogue

Using Status Registers ... 3
About these Commands & Queries .. 3
 How they are listed? .. 3
 How they are described? ... 3
 When can they be used? ... 4
Command Notation ... 4
Table of Commands & Queries ... 5
Commands & Queries .. 11
Index .. 125
Using Status Registers

A wide range of status registers allows the oscilloscope’s internal processing status to be determined quickly at any time. These registers and the instrument’s status reporting system are designed to comply with IEEE 488.2 recommendations. Following an overview, starting this page, each of the registers and their roles are described.

Related functions are grouped together in common status registers. Some, such as the Status Byte Register (STB) or the Standard Event Status Register (ESR), are required by the IEEE 488.2 Standard. Other registers are device-specific, and include the Command Error Register (CMR) and Execution Error Register (EXR). Those commands associated with IEEE 488.2 mandatory status registers are preceded by an asterisk <*>

About these Commands & Queries

This section lists and describes the remote control commands and queries recognized by the instrument. All commands and queries can be executed in either local or remote state.

The description for each command or query, with syntax and other information, begins on a new page. The name (header) is given in both long and short form at the top of the page, and the subject is indicated as a command or query or both. Queries perform actions such as obtaining information, and are recognized by the question mark (?) following the header.

How they are listed

The descriptions are listed in alphabetical order according to their long form. Thus the description of ATTENUATION, whose short form is ATTN, is listed before that of AUTO SETUP, whose short form is ASET.

How they are described

In the descriptions themselves, a brief explanation of the function performed is given. This is followed by a presentation of the formal syntax, with the header given in Upper-and-Lower-
Case characters and the short form derived from it in ALL UPPER-CASE characters. Where applicable, the syntax of the query is given with the format of its response.

When can they be used?

The commands and queries listed here can be used with SDS2000 Series digital instruments.

Command Notation

The following notation is used in the commands:

- Angular brackets enclose words that are used as placeholders, of which there are two types: the header path and the data parameter of a command.
- A colon followed by an equals sign separates a placeholder from the description of the type and range of values that may be used in a command instead of the placeholder.
- Braces enclose a list of choices, one of which one must be made.
- Square brackets enclose optional items.
- An ellipsis indicates that the items both to its left and right may be repeated a number of times.

As an example, consider the syntax notation for the command to set the vertical input sensitivity:

```
<channel>:VOLT_DIV <v_gain>
<channel> := {C1, C2, C3, C4}
<v_gain>: = 2 mV to 10 V
```

The first line shows the formal appearance of the command, with `<channel>` denoting the placeholder for the header path and `<v_gain>` the placeholder for the data parameter specifying the desired vertical gain value. The second line indicates that one of four channels must be chosen for the header path. And the third explains that the actual vertical gain can be set to any value between 2 mV and 10 V.
Table of Commands & Queries

<table>
<thead>
<tr>
<th>Short Form</th>
<th>Long Form</th>
<th>Subsystem</th>
<th>What the Command or Query Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQW</td>
<td>ACQUIRE_WAY</td>
<td>ACQUISITION</td>
<td>Specifies the acquisition mode.</td>
</tr>
<tr>
<td>ALST?</td>
<td>ALL_STATUS?</td>
<td>STATUS</td>
<td>Reads and clears the contents of all status registers.</td>
</tr>
<tr>
<td>ARM</td>
<td>ARM_ACQUISITION</td>
<td>ACQUISITION</td>
<td>Changes acquisition state from “stopped” to “single”.</td>
</tr>
<tr>
<td>ATTN</td>
<td>ATTENUATION</td>
<td>ACQUISITION</td>
<td>Selects the vertical attenuation factor of the probe</td>
</tr>
<tr>
<td>ACAL</td>
<td>AUTO_CALIBRATE</td>
<td>MISCELLANEOUS</td>
<td>Enables or disables automatic calibration.</td>
</tr>
<tr>
<td>ASET</td>
<td>AUTO_SETUP</td>
<td>ACQUISITION</td>
<td>Adjusts vertical, time base and trigger parameters.</td>
</tr>
<tr>
<td>AUTTS</td>
<td>AUTO_TYPESET</td>
<td>ACQUISITION</td>
<td>Selects the display type of automatic setup.</td>
</tr>
<tr>
<td>AVGA</td>
<td>AVERAGE_ACQUIRE</td>
<td>ACQUISITION</td>
<td>Selects the average times of average acquisition.</td>
</tr>
<tr>
<td>BWL</td>
<td>BANDWIDTH_LIMIT</td>
<td>ACQUISITION</td>
<td>Enables/disables the bandwidth-limiting low-pass filter.</td>
</tr>
<tr>
<td>BUZZZ</td>
<td>BUZZER</td>
<td>MISCELLANEOUS</td>
<td>Controls the built-in piezo-electric buzzer.</td>
</tr>
<tr>
<td>*CAL?</td>
<td>*CAL?</td>
<td>MISCELLANEOUS</td>
<td>Performs complete internal calibration of the instrument.</td>
</tr>
<tr>
<td>CHDR</td>
<td>COMM_HEADER</td>
<td>COMMUNICATION</td>
<td>Controls formatting of query responses.</td>
</tr>
<tr>
<td>*CLS</td>
<td>*CLS</td>
<td>STATUS</td>
<td>Clears all status data registers.</td>
</tr>
<tr>
<td>CMR?</td>
<td>CMR?</td>
<td>STATUS</td>
<td>Reads and clears the Command error Register (CMR).</td>
</tr>
<tr>
<td>CONET</td>
<td>COMM_NET</td>
<td>COMMUNICATION</td>
<td>Specifies network addresses of scope and printers.</td>
</tr>
<tr>
<td>CPL</td>
<td>COUPLING</td>
<td>ACQUISITION</td>
<td>Selects the specified input channel’s coupling mode.</td>
</tr>
<tr>
<td>CRMS</td>
<td>CURSOR_MEASURE</td>
<td>CURSOR</td>
<td>Specifies the type of cursor/parameter measurement.</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>CRST?</td>
<td>CURSOR_SET?</td>
<td>CURSOR</td>
<td>Allows positioning of any one of eight cursors.</td>
</tr>
<tr>
<td>CRVA?</td>
<td>CURSOR_VALUE?</td>
<td>CURSOR</td>
<td>Returns trace values measured by specified cursors.</td>
</tr>
<tr>
<td>CSVS</td>
<td>CSV_SAVE</td>
<td>SAVE/RECALL</td>
<td>Saves specified waveform data of CSV format to USB device.</td>
</tr>
<tr>
<td>CYMT</td>
<td>CYMOMETER</td>
<td>FUNCTION</td>
<td>Returns the current cymometer value which displaying on the screen.</td>
</tr>
<tr>
<td>DATE</td>
<td>DATE</td>
<td>MISCELLANEOUS</td>
<td>Changes the date/time of the internal real-time clock.</td>
</tr>
<tr>
<td>DDR?</td>
<td>DDR?</td>
<td>STATUS</td>
<td>Clears the Device Dependent Register (DDR).</td>
</tr>
<tr>
<td>DEF</td>
<td>DEFINE?</td>
<td>FUNCTION</td>
<td>Specifies math expression for function evaluation.</td>
</tr>
<tr>
<td>DELF</td>
<td>DELETE_FILE</td>
<td>MASS STORAGE</td>
<td>Deletes files from mass storage.</td>
</tr>
<tr>
<td>DIR</td>
<td>DIRECTORY</td>
<td>MASS STORAGE</td>
<td>Creates and deletes file directories.</td>
</tr>
<tr>
<td>DTJN</td>
<td>DOT_JOIN</td>
<td>DISPLAY</td>
<td>Controls the interpolation lines between data points.</td>
</tr>
<tr>
<td>*ESE</td>
<td>*ESE</td>
<td>STATUS</td>
<td>Sets the Standard Event Status Enable register (ESE).</td>
</tr>
<tr>
<td>EXR?</td>
<td>EXR?</td>
<td>STATUS</td>
<td>Reads, clears the Execution error Register (EXR).</td>
</tr>
<tr>
<td>FLNM</td>
<td>FILENAME</td>
<td>MASS STORAGE</td>
<td>Changes default filenames.</td>
</tr>
<tr>
<td>FRTR</td>
<td>FORCE_TRIGGER</td>
<td>ACQUISITION</td>
<td>Forces the instrument to make one acquisition.</td>
</tr>
<tr>
<td>FVDISK</td>
<td>FORMAT_VDISK</td>
<td>MASS STORAGE</td>
<td>Reads the capability of the USB device.</td>
</tr>
<tr>
<td>FILT</td>
<td>FILTER</td>
<td>FUNCTION</td>
<td>Enables or disables the filter of specified source.</td>
</tr>
</tbody>
</table>

SDS-RCM
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FILTS</td>
<td>FILT_SET</td>
<td>FUNCTION</td>
<td>Selects the type of filter, and sets the limit value of filter.</td>
</tr>
<tr>
<td>FFTW</td>
<td>FFT_WINDOW</td>
<td>FUNCTION</td>
<td>Selects the window of FFT.</td>
</tr>
<tr>
<td>FFTZ</td>
<td>FFT_ZOOM</td>
<td>FUNCTION</td>
<td>Selects the zoom in/out times of FFT trace.</td>
</tr>
<tr>
<td>FFTS</td>
<td>FFT_SCALE</td>
<td>FUNCTION</td>
<td>Selects the vertical scale of FFT trace.</td>
</tr>
<tr>
<td>FFTF</td>
<td>FFT_FULLSCREEN</td>
<td>FUNCTION</td>
<td>Enables or disables to display the FFT trace full screen.</td>
</tr>
<tr>
<td>GRDS</td>
<td>GRID_DISPLAY</td>
<td>DISPLAY</td>
<td>Selects the type of grid.</td>
</tr>
<tr>
<td>GCSV</td>
<td>GET_CSV</td>
<td>WAVEFORMTRANS</td>
<td>Specifies waveform data of format to controller.</td>
</tr>
<tr>
<td>HMAG</td>
<td>HOR_MAGNIFY</td>
<td>DISPLAY</td>
<td>Horizontally expands the selected expansion trace.</td>
</tr>
<tr>
<td>HPOS</td>
<td>HOR_POSITION</td>
<td>DISPLAY</td>
<td>Horizontally positions intensified zone’s center.</td>
</tr>
<tr>
<td>HCSU</td>
<td>HARDCOPY_SETUP</td>
<td>HARD COPY</td>
<td>Configures the hard-copy driver.</td>
</tr>
<tr>
<td>INTS</td>
<td>INTENSITY</td>
<td>DISPLAY</td>
<td>Sets the grid or trace/text intensity level.</td>
</tr>
<tr>
<td>INR?</td>
<td>INR?</td>
<td>STATUS</td>
<td>Reads, clears INternal state change Register (INR).</td>
</tr>
<tr>
<td>INVS</td>
<td>INVERT_SET</td>
<td>DISPLAY</td>
<td>Invert the trace or the math waveform of specified source.</td>
</tr>
<tr>
<td>LOCK</td>
<td>LOCK</td>
<td>MISCELLANEOUS</td>
<td>Lock keyboard.</td>
</tr>
<tr>
<td>MTVP</td>
<td>MATH_VERT_POS</td>
<td>ACQUISITION</td>
<td>Controls the vertical position of math waveform of specified source.</td>
</tr>
<tr>
<td>MTVD</td>
<td>MATH_VERT_DIV</td>
<td>ACQUISITION</td>
<td>Controls the vertical sensitivity of math waveform of specified source.</td>
</tr>
<tr>
<td>MSIZ</td>
<td>MEMORY_SIZE</td>
<td>FUNCTION</td>
<td>Returns the maximal memory size.</td>
</tr>
<tr>
<td>OFST</td>
<td>OFFSET</td>
<td>ACQUISITION</td>
<td>Allows output channel vertical offset adjustment.</td>
</tr>
<tr>
<td>*OPC</td>
<td>*OPC</td>
<td>STATUS</td>
<td>Sets the OPC bit in the Event Status Register.</td>
</tr>
<tr>
<td>Code</td>
<td>Code</td>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>PACL</td>
<td>PARAMETER_CLR</td>
<td>CURSOR</td>
<td>Clears all current parameters in Custom, Pass/Fail.</td>
</tr>
<tr>
<td>PACU</td>
<td>PARAMETER_CUSTOM</td>
<td>CURSOR</td>
<td>Controls parameters with customizable qualifiers.</td>
</tr>
<tr>
<td>PAVA?</td>
<td>PARAMETER_VALUE?</td>
<td>CURSOR</td>
<td>Returns current parameter, mask test values.</td>
</tr>
<tr>
<td>PDET</td>
<td>PEAK_DETECT</td>
<td>ACQUISITION</td>
<td>Switches the peak detector ON and OFF.</td>
</tr>
<tr>
<td>PERS</td>
<td>PERSIST</td>
<td>DISPLAY</td>
<td>Enables or disables the persistence display mode.</td>
</tr>
<tr>
<td>PESU</td>
<td>PERSIST_SETUP</td>
<td>DISPLAY</td>
<td>Selects display persistence duration.</td>
</tr>
<tr>
<td>PNSU</td>
<td>PANEL_SETUP</td>
<td>SAVE/RECALL</td>
<td>Complements the *SAV/*RST commands.</td>
</tr>
<tr>
<td>PFDS</td>
<td>PF_DISPLAY</td>
<td>FUNCTION</td>
<td>Enables or disables to display the test and the message options of pass/fail.</td>
</tr>
<tr>
<td>PFST</td>
<td>PF_SET</td>
<td>FUNCTION</td>
<td>Sets the X mask and the Y mask.</td>
</tr>
<tr>
<td>PFSL</td>
<td>PF_SAVELOAD</td>
<td>SAVE/RECALL</td>
<td>Saves or recalls the created mask setting.</td>
</tr>
<tr>
<td>PFCT</td>
<td>PF_CONTROL</td>
<td>FUNCTION</td>
<td>Selects the “operate”, “output” and the “stop on output” which are the options of pass/fail.</td>
</tr>
<tr>
<td>PFCM</td>
<td>PF_CREATEM</td>
<td>FUNCTION</td>
<td>Creates the mask of the pass/fail.</td>
</tr>
<tr>
<td>PFDD</td>
<td>PFDATEDIS</td>
<td>FUNCTION</td>
<td>Return the number of the pass/fail monitor which can be displayed on the screen.</td>
</tr>
<tr>
<td>*RCL</td>
<td>*RCL</td>
<td>SAVE/RECALL</td>
<td>Recalls one of five non-volatile panel setups.</td>
</tr>
<tr>
<td>RCPN</td>
<td>RECALL_PANEL</td>
<td>SAVE/RECALL</td>
<td>Recalls a front-panel setup from mass storage.</td>
</tr>
<tr>
<td>*RST</td>
<td>*RST</td>
<td>SAVE/RECALL</td>
<td>The *RST command initiates a device reset.</td>
</tr>
<tr>
<td>REF S</td>
<td>REF_SET</td>
<td>FUNCTION</td>
<td>Sets the reference waveform and its options.</td>
</tr>
<tr>
<td>*SAV</td>
<td>*SAV</td>
<td>SAVE/RECALL</td>
<td>Stores current state in non-volatile internal memory.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Subsystem</td>
<td>Function</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>SCDP</td>
<td>Causes a screen dump to controller.</td>
<td>HARD COPY</td>
<td></td>
</tr>
<tr>
<td>SCSV</td>
<td>Controls the automatic screen saver.</td>
<td>SCREEN_SAVE</td>
<td></td>
</tr>
<tr>
<td>*SRE</td>
<td>Sets the Service Request Enable register (SRE).</td>
<td>STATUS</td>
<td></td>
</tr>
<tr>
<td>*STB?</td>
<td>Reads the contents of IEEE 488.</td>
<td>STATUS</td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td>Immediately stops signal acquisition.</td>
<td>STOP</td>
<td></td>
</tr>
<tr>
<td>STO</td>
<td>Stores a trace in internal memory or mass storage.</td>
<td>STORE</td>
<td></td>
</tr>
<tr>
<td>STPN</td>
<td>Stores front-panel setup to mass storage.</td>
<td>STORE_PANEL</td>
<td></td>
</tr>
<tr>
<td>STST</td>
<td>Controls the way in which traces are stored.</td>
<td>STORE_SETUP</td>
<td></td>
</tr>
<tr>
<td>SAST</td>
<td>Return the acquisition status of the scope</td>
<td>SAMPLE_STATUS</td>
<td></td>
</tr>
<tr>
<td>SARA</td>
<td>Return the sample rate of the scope</td>
<td>SAMPLE_RATE</td>
<td></td>
</tr>
<tr>
<td>SANU</td>
<td>Return the number of sampled points available from last acquisition and the trigger position.</td>
<td>SAMPLE_NUM</td>
<td></td>
</tr>
<tr>
<td>SKEW</td>
<td>Sets the skew of specified trace.</td>
<td>SKEW</td>
<td></td>
</tr>
<tr>
<td>SXSA</td>
<td>Sets the type of the interpolation.</td>
<td>SINXX_SAMPLE</td>
<td></td>
</tr>
<tr>
<td>TDIV</td>
<td>Modifies the time base setting.</td>
<td>TIME_DIV</td>
<td></td>
</tr>
<tr>
<td>TMPL</td>
<td>Produces a complete waveform template copy.</td>
<td>TEMPLATE</td>
<td></td>
</tr>
<tr>
<td>TRA</td>
<td>Enables or disables the display of a trace.</td>
<td>TRACE</td>
<td></td>
</tr>
<tr>
<td>*TRG</td>
<td>Executes an ARM command.</td>
<td>TRG</td>
<td></td>
</tr>
<tr>
<td>TRCP</td>
<td>Sets the coupling mode of the specified trigger source.</td>
<td>TRIG_COUPLING</td>
<td></td>
</tr>
<tr>
<td>TRDL</td>
<td>Sets the time at which the trigger is to occur.</td>
<td>TRIG_DELAY</td>
<td></td>
</tr>
<tr>
<td>TRLV</td>
<td>Adjusts the trigger level of the specified trigger source.</td>
<td>TRIG_LEVEL</td>
<td></td>
</tr>
<tr>
<td>TRLV2</td>
<td>Adjusts the second trigger level of the specified</td>
<td>TRIG_LEVEL2</td>
<td></td>
</tr>
<tr>
<td>COMMAND</td>
<td>DESCRIPTOR</td>
<td>FUNCTION</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>TRMD</td>
<td>TRIG_MODE</td>
<td>ACQUISITION</td>
<td>trigger source. the trigger mode.</td>
</tr>
<tr>
<td>TRSE</td>
<td>TRIG_SELECT</td>
<td>ACQUISITION</td>
<td>Selects the condition that will trigger acquisition.</td>
</tr>
<tr>
<td>TRSL</td>
<td>TRIG_SLOPE</td>
<td>ACQUISITION</td>
<td>Sets the trigger slope of the specified trigger source.</td>
</tr>
<tr>
<td>TRWI</td>
<td>TRIG_WINDOW</td>
<td>ACQUISITION</td>
<td>Return relative height of the trigger window.</td>
</tr>
<tr>
<td>TRPA</td>
<td>TRIG_PATTERN</td>
<td>ACQUISITION</td>
<td>Sets the condition of the pattern trigger.</td>
</tr>
<tr>
<td>UNIT</td>
<td>UNIT</td>
<td>ACQUISITION</td>
<td>Sets the unit of specified trace.</td>
</tr>
<tr>
<td>VPOS</td>
<td>VERT_POSITION</td>
<td>DISPLAY</td>
<td>Adjusts the vertical position of the FFT trace.</td>
</tr>
<tr>
<td>VDIV</td>
<td>VOLT_DIV</td>
<td>ACQUISITION</td>
<td>Sets the vertical sensitivity.</td>
</tr>
<tr>
<td>WF</td>
<td>WAVEFORM</td>
<td>WAVEFORMTRANS</td>
<td>Gets the waveform from the instrument.</td>
</tr>
<tr>
<td>WFSU</td>
<td>WAVEFORM_SETUP</td>
<td>WAVEFORMTRANS</td>
<td>Specifies amount of waveform data to go to controller.</td>
</tr>
<tr>
<td>WAIT</td>
<td>WAIT</td>
<td>ACQUISITION</td>
<td>Prevents new analysis until current has been completed.</td>
</tr>
<tr>
<td>XYDS</td>
<td>XY_DISPLAY</td>
<td>DISPLAY</td>
<td>Enables or disables to display the XY format.</td>
</tr>
</tbody>
</table>
Commands & Queries

ACQUISITION

DESCRIPTION
The ACQUIRE_WAY command specifies the acquisition mode.

The ACQUIRE_WAY? Query returns the current acquisition mode.

COMMAND SYNTAX
ACQUIRE_WAY <mode>[,<time>]

<mode> :=
{ SAMPLING, PEAK_DETECT, AVERAGE, HIGH_RES }

<time> := {4, 16, 32, 64, 128, 256, 512, 1024}

Note: The <time> parameter only can be set with the average acquisition mode.

QUERY SYNTAX
ACQUIRE_WAY?

RESPONSE FORMAT
ACQUIRE_WAY <mode>[,<time>]

EXAMPLE
The following command sets the acquisition mode to average mode, and also sets the average time to 16.

Command message:
ACQW AVERAGE,16

RELATED COMMANDS
AVGA, PDET
DESCRIPTION

The ALL_STATUS? Query reads and clears the contents of all status registers: STB, ESR, INR, DDR, CMR, EXR and URR except for the MAV bit (bit 6) of the STB register. For an interpretation of the contents of each register, refer to the appropriate status register.

The ALL_STATUS? Query is useful in a complete overview of the state of the instrument.

QUERY SYNTAX

ALL_STATUS?

RESPONSE FORMAT

```
ALL_STATUS
STB,<value>,ESR,<value>,INR,<value>,DDR,<value>,CMR,<value>,EXR,<value>,URR,<value>
```

<value> : = 0 to 65535

EXAMPLE

The following instruction reads the contents of all the status registers:

Command message:

ALST?

Response message:

ALST STB, 0, ESR, 52, INR, 5, DDR, 0, CMR, 4, EXR, 24, URR, 0

RELATED COMMANDS

*CLS, CMR?, DDR?, *ESR?, EXR?, *STB?, URR?
DESCRIPTION
The ARM_ACQUISITION command enables the signal acquisition process by changing the acquisition state (trigger mode) from “stopped” to “single”.

COMMAND SYNTAX
ARM acquisition

EXAMPLE
The following command enables signal acquisition:

Command message:
ARM

RELATED COMMANDS
STOP, *TRG, TRIG_MODE, WAIT
DESCRIPTION

The ATTENUATION command selects the vertical attenuation factor of the probe. Values of 1, 5, 10, 50, 100, 500, and 1000 may be specified.

The ATTENUATION? Query returns the attenuation factor of the specified channel.

COMMAND SYNTAX

```
<channel>: ATTeNuation <attenuation>
<channel> : = {C1, C2, C3, C4}
<attenuation>: = {1, 5, 10, 50, 100, 500, 1000}
```

QUERY SYNTAX

```
<channel>: ATTeNuation?
```

RESPONSE FORMAT

```
<channel>: ATTeNuation <attenuation>
```

EXAMPLE

The following command sets to 100 the attenuation factor of Channel 1:

Command message:

C1:ATTN 100
DESCRIPTION

The AUTO_CALIBRATE command is used to enable or disable the quick calibration of the instrument.

The quick calibration may be disabled by issuing the command ACAL OFF. Whenever it is convenient, a *CAL? Query may be issued to fully calibrate the oscilloscope.

The response to the AUTO_CALIBRATE? Query indicates whether quick-calibration is enabled.

The command is only used in the CFL series instrument.

COMMAND SYNTAX

```
Auto_CALibrate <state>
```

<state> := {ON, OFF}

QUERY SYNTAX

```
Auto_CALibrate?
```

RESPONSE FORMAT

```
Auto_CALibrate <state>
```

EXAMPLE

The following instruction disables quick-calibration:

Command message:

```
ACAL OFF
```

RELATED COMMANDS

*CAL?
DESCRIPTION

The AUTO_SETUP command attempts to identify the waveform type and automatically adjusts controls to produce a usable display of the input signal.

COMMAND SYNTAX

AUTO_SETUP

EXAMPLE

The following command instructs the oscilloscope to perform an auto-setup:

Command message:
ASET

RELATED COMMANDS

AUTTS
DESCRIPTION

The AUTO_TYPESET command selects the specified type of automatically adjusting which is used to display.

COMMAND SYNTAX

```
AUTO_TYPESET <type>
```

<type> : = {SP, MP, RS, DRP, RC}

SP means only one period to be displayed, MP means multiple periods to be displayed, RS means the waveform is triggered on the rise side, DRP means the waveform is triggered on the drop side, and RC means to go back to the state before auto set.

QUERY SYNTAX

```
AUTO_TYPESET?
```

RESPONSE FORMAT

```
AUTO_TYPESET <type>
```

EXAMPLE

The following command sets the type of automatic adjustment to multiple periods:

Command message:
AUTTS MP

RELATED COMMANDS

ASET
DESCRIPTION

The AVERAGE_ACQUIRE command selects the average times of average acquisition.

The response to the AVERAGE_ACQUIRE query indicates the times of average acquisition.

COMMAND SYNTAX

AVERAGE_ACQUIRE <time>

<time> := \{4, 16, 32, 64, 128, 256, 512, 1024\}

QUERY SYNTAX

AVERAGE_ACQUIRE?

RESPONSE FORMAT

AVERAGE_ACQUIRE <time>

EXAMPLE

The following turns the average times of average acquisition 16:

Command message:
AVGA 16
DESCRIPTION

BANDWIDTH_LIMIT enables or disables the bandwidth-limiting low-pass filter. If the bandwidth filters are on, it will limit the bandwidth to reduce display noise. When you turn Bandwidth Limit ON, the Bandwidth Limit value is set to 20 MHz. It also filters the signal to reduce noise and other unwanted high frequency components.

The response to the BANDWIDTH_LIMIT? Query indicates whether the bandwidth filters are on or off.

COMMAND SYNTAX

BandWidth_Limit <channel>, <mode>
[, <channel>, <mode> [, <channel>, <mode>] [, <channel>, <mode>]]

<channel> := \{C1, C2, C3, C4\}
<mode> := \{ON, OFF\}

QUERY SYNTAX

BandWidth_Limit?

RESPONSE FORMAT

BandWidth_Limit <channel>, <mode> [, <channel>, <mode> [, <channel>, <mode>] [, <channel>, <mode>]]

EXAMPLE

The following turns on the bandwidth filter for all channels, when Global_BWL is on (as it is by default:

The following turns the bandwidth filter on for Channel 1 only:

Command message:
BWL C1, ON
DESCRIPTION

The BUZZER command enables or disables sound switch.

The response to the BUZZER? query indicates whether the sound switch is enabled.

COMMAND SYNTAX

BUZZer <state>

<state>: = {ON, OFF}

QUERY SYNTAX

BUZZER?

RESPONSE FORMAT

BUZZER <state>

EXAMPLE

Sending the following code will let the oscilloscope turn on the sound switch.

Command message:
BUZZ ON
MISCELLANEOUS

CAL? Query

DESCRIPTION
The *CAL? query cause the oscilloscope to perform an internal self-calibration and generates a response.

QUERY SYNTAX
*CAL?

RESPONSE FORMAT
*CAL <diagnostics>
<diagnostics> : = 0
0 = Calibration successful

EXAMPLE
The following instruction forces a self-calibration:

Command message:
*CAL?

Response message:
*CAL 0

RELATED COMMANDS
AUTO_CALIBRATE
DESCRIPTION

The COMM_HEADER command controls the way the oscilloscope formats responses to queries. There are three response formats: LONG, in which responses start with the long form of the header word; SHORT, where responses start with the short form of the header word; and OFF, for which headers are omitted from the response and units in numbers are suppressed.

Unless you request otherwise, the SHORT response format is used.

This command does not affect the interpretation of messages sent to the oscilloscope. Headers can be sent in their long or short form regardless of the COMM_HEADER setting.

Querying the vertical sensitivity of Channel 1 may result in one of the following responses:

<table>
<thead>
<tr>
<th>COMM_HEADER</th>
<th>RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONG</td>
<td>C1:VOLT_DIV 200E-3 V</td>
</tr>
<tr>
<td>SHORT</td>
<td>C1:VDIV 200E-3 V</td>
</tr>
<tr>
<td>OFF</td>
<td>200E-3</td>
</tr>
</tbody>
</table>

COMMAND SYNTAX

Comm_HeaDeR <mode>

<mode> : = {SHORT, LONG, OFF}

QUERY SYNTAX

Comm_HeaDeR?

RESPONSE FORMAT

Comm_HeaDeR <mode>

The following code sets the response header format to SHORT:

Command message:
CHDR SHORT
STATUS

*CLS
Command

DESCRIPTION
The *CLS command clears all the status data registers.

COMMAND SYNTAX
*CLS

EXAMPLE
The following command causes all the status data registers to be cleared:

Command message:
*CLS

RELATED COMMANDS
ALL_STATUS, CMR, DDR, *ESR, EXR, *STB, URR
DESCRIPTION

The CMR? Query reads and clears the contents of the Command error Register (CMR) — see table next page—which specifies the last syntax error type detected by the instrument.

QUERY SYNTAX

CMR?

RESPONSE FORMAT

CMR <value>

<value> : = 0 to 14

EXAMPLE

The following instruction reads the contents of the CMR register:

Command message:
CMR?

Response message:
CMR 0

RELATED COMMANDS

ALL_STATUS? ,*CLS
ADDITIONAL INFORMATION

Command Error Status Register Structure (CMR)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unrecognized command/query header</td>
</tr>
<tr>
<td>2</td>
<td>Invalid character</td>
</tr>
<tr>
<td>3</td>
<td>Invalid separator</td>
</tr>
<tr>
<td>4</td>
<td>Missing parameter</td>
</tr>
<tr>
<td>5</td>
<td>Unrecognized keyword</td>
</tr>
<tr>
<td>6</td>
<td>String error</td>
</tr>
<tr>
<td>7</td>
<td>Parameter cannot allowed</td>
</tr>
<tr>
<td>8</td>
<td>Command String Too Long</td>
</tr>
<tr>
<td>9</td>
<td>Query cannot allowed</td>
</tr>
<tr>
<td>10</td>
<td>Missing Query mask</td>
</tr>
<tr>
<td>11</td>
<td>Invalid parameter</td>
</tr>
<tr>
<td>12</td>
<td>Parameter syntax error</td>
</tr>
<tr>
<td>13</td>
<td>Filename too long</td>
</tr>
</tbody>
</table>
DESCRIPTION

The COMM_NET command changes the IP address of the oscilloscope’s internal network interface.

The COMM_NET? query returns the IP address of the oscilloscope’s internal network interface.

COMMAND SYNTAX

COMM_NET <ip_add0>, <ip_add1>, <ip_add2>, <ip_add3>

\(<\text{ip_add}\>):= 0 to 255

QUERY SYNTAX

COMM_NET?

RESPONSE FORMAT

COMM_NET <ip_add0>, <ip_add1>, <ip_add2>, <ip_add3>

EXAMPLE

This instruction will change the IP address to 10.11.0.230:

Command message:
CONET 10,11,0,230

MISCELLANEOUS

COMM_NET, CONET

Command /Query
DESCRIPTION

The COUPLING command selects the coupling mode of the specified input channel.

The COUPLING? query returns the coupling mode of the specified channel.

COMMAND SYNTAX

<channel>: CouPLing <coupling>
<channel> : = {C1, C2, C3, C4}
<coupling> : = {A1M, A50, D1M, D50, GND}

The A of the <coupling> is alternating current.
The D of the <coupling> is direct current. 1M and 50 is the impedance of input.
Some series (CML) couldn’t have the set of input impedance.

QUERY SYNTAX

<channel>: CouPLing?

RESPONSE FORMAT

<channel>: CouPLing <coupling>

EXAMPLE

The following command sets the coupling of Channel 2 to 50 ΩDC:

Command message:
C2: CPL D50
CURSOR

DESCRIPTION
The CURSOR_MEASURE command specifies the type of cursor or parameter measurement to be displayed.

The CURSOR_MEASURE? query indicates which cursors or parameter measurements are currently displayed.

COMMAND SYNTAX
CuRsor_MeaSure <mode>
<mode>={ OFF, ON}

QUERY SYNTAX
CuRsor_MeaSure?

RESPONSE FORMAT
CuRsor_MeaSure <mode>

EXAMPLE
The following command determines cursor function is turned off:

Command message:
CRMS OFF

RELATED COMMANDS
CURSOR_VALUE, PARAMETER_VALUE
DESCRIPTION

The CURSOR_SET command allows the user to position any one of the eight independent cursors at a given screen location. The positions of the cursors can be modified or queried even if the required cursor is not currently displayed on the screen. When setting a cursor position, a trace must be specified, relative to which the cursor will be positioned.

The CURSOR_SET? Query indicates the current position of the cursor(s). The values returned depend on the grid type selected.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREF</td>
<td>The volt-value of curA under manual cursor mode</td>
</tr>
<tr>
<td>VDIF</td>
<td>The volt-value of curB under manual cursor mode</td>
</tr>
<tr>
<td>TREF</td>
<td>The time value of curA under manual cursor mode</td>
</tr>
<tr>
<td>TDIF</td>
<td>The time value of curB under manual cursor mode</td>
</tr>
</tbody>
</table>

COMMANDS SYNTAX

```
<trace>:CuRsor_SeT<cursor>,<position>[,<cursor>,<position>,<cursor>,<position>]
```

< trace > := {C1, C2, C3, C4}
<cursor> := { VREF, VDIF, TREF, TDIF}
<position>:= 0.1 to 13.9 DIV (horizontal of track, the range of the value is related to the size of the screen)
<position>:= -4 to 4 DIV (vertical)
<position>:= -6 or -9 to 6 DIV (horizontal of manual, the range of the value is related to the size of the screen)

QUERY SYNTAX

```
<trace>: CuRsor_SeT? [<cursor>, ...<cursor>]
<cursor> := { VREF, VDIF, TREF, TDIF}
```
RESPONSE FORMAT

```
<trace>:CuRssor_ScT <cursor>, <position> [,<cursor>, <position>, <cursor>, <position>]
```

EXAMPLE

The following command positions the VREF and VDIF cursors at +3 DIV and −1 DIV respectively, using C1 as a reference:

Command message:
C1: CRST VREF, 3DIV, VDIF, −1DIV

RELATED COMMANDS

CURSOR_MEASURE, CURSOR_VALUE, PARAMETER_VALUE
CURSOR

DESCRIPTION

The CURSOR_VALUE? Query returns the values measured by the specified cursors for a given trace. (The PARAMETER_VALUE? query is used to obtain measured waveform parameter values.)

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HREL</td>
<td>the cursor value under track cursor mode</td>
</tr>
<tr>
<td>VREL</td>
<td>the delta volt-value under manual cursor mode</td>
</tr>
</tbody>
</table>

QUERY SYNTAX

<trace>: CuRsor_Value? [<mode>,…<mode>]
<trace> : = { C1, C2, C3, C4}
<mode> : = { HREL, VREL }

RESPONSE FORMAT

<trace> : CuRsor_Value HREL,
<delta_hori>,<delta_vert>,<A->T>,
<A->V>,<(delta_vert)/(delta_hori)>
<trace> : CuRsor_Value VREL,<delta_vert>

EXAMPLE

The following query reads the delta volt value under manual cursor mode (VREL) on Channel 2:

Command message:
C2:CRVA? VREL

Response message:
C2:CuRsor_Value VREL 1.00V

RELATED COMMANDS

CURSOR_SET, PARAMETER_VALUE
SAVE/RECALL

CSV_SAVE, CSVVS

Command / Query

DESCRIPTION

The CSV_SAVE command selects the specified option of storing CSV format waveform.

The CSV_SAVE? query returns the option of storing waveform data of CSV format.

COMMAND SYNTAX

CSV_SAVE SAVE, <state>

The option SAVE is that if the waveform data is stored with parameter.

<save>: = {OFF, ON}

QUERY SYNTAX

CSV_SAVE?

RESPONSE FORMAT

CSV_SAVE SAVE, <state>

EXAMPLE

The following command sets “para” save to off

Command message:

CSVSAVE SAVE,OFF
FUNCTION

CYMOMETER, CYMT

Query

DESCRIPTION

The response to the CYMOMETER? query is the value of cymometer which displaying on the screen of the instrument. When the signal frequency is less than 10Hz, it returns 10Hz.

QUERY SYNTAX

CYMOMETER?

RESPONSE FORMAT

CYMOMETER <option>

EXAMPLE

The following instruction returns the value of cymometer which displaying on the screen of the instrument.

Response message:

CYMT 10Hz
The DATE command changes the date/time of the oscilloscope’s internal real-time clock.

The command is only used in the CFL series instrument.

COMMAND SYNTAX

`DATE <day>, <month>, <year>, <hour>, <minute>, <second>`

- `<day>` : = 1 to 31
- `<month>` : = {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC}
- `<year>` : = 1990 to 2089
- `<hour>` : = 0 to 23
- `<minute>` : = 0 to 59
- `<second>` : = 0 to 59

EXAMPLE

This instruction will change the date to NOV. 1, 2009 and the time to 14:38:16:

Command message:

`DATE 1, NOV, 2009, 14, 38, 16`
DESCRIPTION

The DDR? Query reads and clears the contents of the Device Dependent or device specific error Register (DDR). In the case of a hardware failure, the DDR register specifies the origin of the failure.

QUERY SYNTAX

DDR?

RESPONSE FORMAT

DDR <value>
<value> : = 0 to 65535

EXAMPLE

The following instruction reads the contents of the DDR register:

Command message:
DDR?

Response message:
DDR 0

RELATED COMMANDS

ALL_STATUS?, *CLS
FUNCTION

DEFINE, DEF

Command/Query

DESCRIPTION

The DEFINE command specifies the mathematical expression to be evaluated by a function.

COMMAND SYNTAX

DEFine EQN,’<equation>’

<equation> the mathematical expression

<table>
<thead>
<tr>
<th>Function Equations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><source1> + <source2></td>
<td>Addition</td>
</tr>
<tr>
<td><source1> - <source2></td>
<td>Subtraction</td>
</tr>
<tr>
<td><source1>*<source2></td>
<td>Multiplication</td>
</tr>
<tr>
<td><source1>/<source2></td>
<td>Ratio</td>
</tr>
<tr>
<td>FFT(source x)</td>
<td>FFT</td>
</tr>
<tr>
<td>INTG(source x)</td>
<td>Integral</td>
</tr>
<tr>
<td>DIFF(source x)</td>
<td>Differentiator</td>
</tr>
<tr>
<td>SQRT(source x)</td>
<td>Square Root</td>
</tr>
</tbody>
</table>

QUERY SYNTAX

DEFine?

RESPONSE FORMAT

DEFine EQN,’<equation>’

EXAMPLE

Command message:
DEFine EQN,’C1*C2’
DESCRIPTION
The DELETE_FILE command deletes files from the currently selected directory on mass storage.

COMMAND SYNTAX
DELe te _File DISK, <device>, FILE, ‘<filename>’
<device>: ={UDSK}
<filename>: = a file of specified directory and the specified file should up to eight characters.

EXAMPLE
The following command deletes a front-panel setup from the directory named SETUP in a USB memory device:

Command message:
DELF DISK, UDSK, FILE, ‘/ SETUP /001.SET’

RELATED COMMANDS DIRECTORY
DESCRIPTION

The DIRECTORY command is used to manage the creation and deletion of file directories on mass storage devices. It also allows selection of the current working directory and listing of files in the directory.

The query response consists of a double-quoted string containing a DOS-like listing of the directory.

COMMAND SYNTAX

Directory DISK, <device>, ACTION, <action>, ‘<directory>’

QUERY SYNTAX

Directory? DISK, <device> [, ‘<directory>’]

 <device>: ={UDSK}
 <action>: ={CREATE, DELETE}
 <directory>: = A legal DOS path or filename.
 (This can include the ‘/’ character to define the root directory.)

RESPONSE FORMAT

DIRectory DISK, <device> “<directory>”

EXAMPLE

The following asks for a listing of the directory of a USB memory device:

Command message:
DIR? DISK, UDSK

Response message:
DIRectory DISK, UDSK,"A:
SDS2000
SDS2000AA
BB.SET 2.00 KB
SDS00001.SET 2.00 KB
SDS00002.SET 2.00 KB

3 File(s), 2 DIR(s)

"**RELATED COMMANDS**

DELF
DESCRIPTION
The DOT_JOIN command controls the interpolation lines between data points.

COMMAND SYNTAX
DoT_Join <state>
<state> := {ON, OFF}

QUERY SYNTAX
DoT_Join?

RESPONSE FORMAT
DoT_Join <state>

EXAMPLE
The following instruction turns off the interpolation lines:

Command message:
DTJN OFF
DESCRIPTION
The *ESE command sets the Standard Event Status Enable register (ESE). This command allows one or more events in the ESR register to be reflected in the ESB summary message bit (bit 5) of the STB register.

COMMAND SYNTAX
*ESE <value>
[value] := 0 to 255

QUERY SYNTAX
*ESE?

RESPONSE FORMAT
*ESE <value>

EXAMPLE
The following instruction allows the ESB bit to be set if a user request (URQ bit 6, i.e. decimal 64) and/or a device dependent error (DDE bit 3, i.e. decimal 8) occurs. Summing these values yields the ESE register mask 64+8=72.

Command message:
*ESE 72

RELATED COMMANDS
*ESR
DESCRIPTION

The *ESR? query reads and clears the contents of the Event Status Register (ESR). The response represents the sum of the binary values of the register bits 0 to 7.

QUERY SYNTAX

*ESR?

RESPONSE FORMAT

*ESR <value>

<value> : 0 to 255

EXAMPLE

The following instruction reads and clears the contents of the ESR register:

Command message:

*ESR?

Response message:

*ESR 0

RELATED COMMANDS

ALL_STATUS, *CLS, *ESE
ADDITIONAL INFORMATION

Standard Event Status Register (ESR)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Value</th>
<th>Bit Name</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>15~8</td>
<td>0</td>
<td></td>
<td>reserved by IEEE 488.2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>PON</td>
<td>Power off-to-ON transition as occurred</td>
<td>(1)</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>URQ</td>
<td>User Request has been issued</td>
<td>(2)</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>CME</td>
<td>Command parser Error has been detected</td>
<td>(3)</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>EXE</td>
<td>Execution Error detected</td>
<td>(4)</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>DDE</td>
<td>Device specific Error occurred</td>
<td>(5)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>QYE</td>
<td>Query Error occurred</td>
<td>(6)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>RQC</td>
<td>Instrument never requests bus control</td>
<td>(7)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>OPC</td>
<td>Instrument never requests bus control</td>
<td>(8)</td>
</tr>
</tbody>
</table>
Notes

(1) The Power On (PON) bit is always turned on (1) when the unit is powered up.

(2) The User Request (URQ) bit is set true (1) when a soft key is pressed. An associated register URR identifies which key was selected. For further details refer to the URR? query.

(3) The Command parser Error bit (CME) is set true (1) whenever a command syntax error is detected. The CME bit has an associated Command parser Register (CMR) which specifies the error code. Refer to the query CMR? for further details.

(4) The Execution Error bit (EXE) is set true (1) when a command cannot be executed due to some device condition (e.g. oscilloscope in local state) or a semantic error. The EXE bit has an associated Execution Error Register (EXR) which specifies the error code. Refer to query EXR? for further details.

(5) The Device specific Error (DDE) is set true (1) whenever a hardware failure has occurred at power-up, or execution time, such as a channel overload condition, a trigger or a timebase circuit defect. The origin of the failure may be localized via the DDR? or the self test *TST? query.

(6) The Query Error bit (QYE) is set true (1) whenever (a) an attempt is made to read data from the Output Queue when no output is either present or pending, (b) data in the Output Queue has been lost, (c) both output and input buffers are full (deadlock state), (d) an attempt is made by the controller to read before having sent an <END>, (e) a command is received before the response to the previous query was read (output buffer flushed).

(7) The Request Control bit (RQC) is always false (0), as the oscilloscope has no GPIB controlling capability.

(8) The Operation Complete bit (OPC) is set true (1) whenever *OPC has been received, since commands and queries are strictly executed in sequential order. The oscilloscope starts processing a command only when the previous command has been entirely executed.
DESCRIPTION
The EXR? query reads and clears the contents of the Execution error Register (EXR). The EXR register specifies the type of the last error detected during execution.

QUERY SYNTAX
EXR?

RESPONSE FORMAT
EXR <value>

EXAMPLE
The following instruction reads the contents of the EXR register:

Command message:
EXR?

Response message (if no fault):
EXR 0

RELATED COMMANDS
ALL_STATUS, *CLS
ADDITIONAL INFORMATION

Execution Error Status Register Structure (EXR)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Permission error. The command cannot be executed in local mode.</td>
</tr>
<tr>
<td>22</td>
<td>Environment error. The instrument is not configured to correctly process a command. For instance, the oscilloscope cannot be set to RIS at a slow timebase.</td>
</tr>
<tr>
<td>23</td>
<td>Option error. The command applies to an option which has not been installed.</td>
</tr>
<tr>
<td>25</td>
<td>Parameter error. Too many parameters specified.</td>
</tr>
<tr>
<td>26</td>
<td>Non-implemented command.</td>
</tr>
<tr>
<td>32</td>
<td>Waveform descriptor error. An invalid waveform descriptor has been detected.</td>
</tr>
<tr>
<td>36</td>
<td>Panel setup error. An invalid panel setup data block has been detected.</td>
</tr>
<tr>
<td>50</td>
<td>No mass storage present when user attempted to access it.</td>
</tr>
<tr>
<td>53</td>
<td>Mass storage was write protected when user attempted to create, or a file, to delete a file, or to format the device.</td>
</tr>
<tr>
<td>58</td>
<td>Mass storage file not found.</td>
</tr>
<tr>
<td>59</td>
<td>Requested directory not found.</td>
</tr>
<tr>
<td>61</td>
<td>Mass storage filename not DOS compatible, or illegal filename.</td>
</tr>
<tr>
<td>62</td>
<td>Cannot write on mass storage because filename already exists.</td>
</tr>
</tbody>
</table>
MASS STORAGE

FILENAME, FLNM

Command / Query

DESCRIPTION
The FILENAME command is used to change the default filename given to any traces, setups and hard copies when they are being stored to a mass storage device.

COMMAND SYNTAX

\[
\text{FiLeNaMe \ TYPE, \ <type>, \ FILE, \ '{<filename>}'}
\]

\[
<\text{type}> :\{ \ C1, C2, C3, C4, SETUP, TA, TB, TC, TD, HCOPY \}
\]

\[
<\text{filename}> :\text{ an alphanumeric string of up to 8 characters forming a legal DOS filename.}
\]

Note: the file’s extension can be specified automatically by the oscilloscope.

QUERY SYNTAX

\[
\text{FiLeNaMe\ ? \ TYPE, \ <type>}
\]

\[
<\text{type}> :\{ \ \text{ALL, C1, C2, C3, C4, SETUP, TA, TB, TC, TD, HCOPY} \}
\]

RESPONSE FORMAT

\[
\text{FiLeNaMe \ TYPE, \ <type>, \ FILE, \ '{<filename>}' \ [\ TYPE, \ <type>, \ FILE, \ '{<filename>}'\ldots]
\]

EXAMPLE
The following command designates channel 1 waveform files to be “TESTWF.DAV”:

Command message:

FLNM TYPE, C1, FILE, ‘TESTWF’

RELATED COMMANDS

DIRECTORY, DELETE_FILE
MASS STORAGE

FORMAT_VDISK, FVDISK

Query

DESCRIPTION

The FORMAT_VDISK? query reads the capability of the USB memory device.

QUERY SYNTAX

Format_VDISK?

RESPONSE FORMAT

Format_VDISK <capability>
<capability>:= the capability of the USB memory device.

EXAMPLE

The following query reads the capability of the USB device.

Command message:
Format_VDISK?

Response message:
Format_VDISK 963 MB
FUNCTION

FFT_WINDOW, FFTW
Command /Query

DESCRIPTION
The FFT_WINDOW command selects the window of FFT (Fast Fourier Transform algorithm).

The response to the FFT_WINDOW? query indicates current window of FFT

COMMAND SYNTAX
FFT_WINDOW <window>
< window > : = {RECT, BLAC, HANN, HAMM}
RECT is short for rectangle.
BLAC is short for Blackman.
HANN is short for hanning.
HAMM is short for hamming.

QUERY SYNTAX
FFT_WINDOW?

RESPONSE FORMAT
FFT_WINDOW,<window>

EXAMPLE
The following command sets the FFT window to hamming:

Command message:
FFTW HAMM
FUNCTION

FFT_ZOOM, FFTZ

Command /Query

DESCRIPTION

The FFT_ZOOM command selects the specified zoom of FFT.

The response to the FFT_ZOOM? query indicates current zoom in/out times of FFT.

COMMAND SYNTAX

FFT_ZOOM <zoom>
<zoom> : = {1,2,5,10}

QUERY SYNTAX

FFT_ZOOM?

RESPONSE FORMAT

FFT_ZOOM,<zoom>

EXAMPLE

The following command sets the zoom factor of FFT to 1X:

Command message:
FFTZ 1
FUNCTION

FFT_SCALE, FFTS
Command /Query

DESCRIPTION

The FFT_SCALE command selects the specified scale of FFT (Fast Fourier Transform algorithm).

The response to the FFT_SCALE? query indicates current vertical scale of FFT waveform.

COMMAND SYNTAX

FFT_SCALE <scale>
< scale > : = {VRMS, DBVRMS}

QUERY SYNTAX

FFT_SCALE?

RESPONSE FORMAT

FFT_SCALE, < scale >

EXAMPLE

The following command turns the vertical scale of FFT to dBVrms:

Command message:
FFTS DBVRMS
FUNCTION

FFT_FULLSCREEN, FFTF
Command /Query

DESCRIPTION
The FFT_FULLSCREEN command enables or disables to display the FFT waveform full screen.

The response to the FFT_FULLSCREEN? query indicates whether the FFT waveform is full screen displayed.

COMMAND SYNTAX
FFT_FULLSCREEN <state>
< state > := {ON,OFF}

QUERY SYNTAX
FFT_FULLSCREEN?

RESPONSE FORMAT
FFT_FULLSCREEN < state >

EXAMPLE
The following command enables to display the FFT waveform full screen:

Command message:
FFT F ON
DISPLAY

GRID_DISPLAY, GRDS

Command /Query

DESCRIPTION
The GRID_DISPLAY command selects the type of the grid which is used to display.

The response to the GRID_DISPLAY? query indicates current type of the grid.

COMMAND SYNTAX
GRID_DISPLAY <type>

< type > : = {FULL, HALF, OFF}

QUERY SYNTAX
GRID_DISPLAY?

RESPONSE FORMAT
GRID_DISPLAY < type >

EXAMPLE
The following command changes the type of grid to full grid:

Command message:
GRID_DISPLAY FULL
DESCRIPTION

Indicates current waveform of CSV format.

The response to the GET_CSV? query indicates current waveform of CSV format.

The GET_CSV? query have option to set. They are the same as the options of CSVS.

QUERY SYNTAX

GET_CSV? SAVE,<state>

The option SAVE is that if the waveform data have parameters.

<save>: = {OFF,ON}

RESPONSE FORMAT

The waveform date of CSV format

EXAMPLE

The following command transfers the waveform data of CSV format to the controller. It has parameters information.

Command message:
GET_CSV? SAVE,ON
The HOR_MAGNIFY command horizontally expands the selected expansion trace by a specified factor. Magnification factors not within the range of permissible values will be rounded off to the closest legal value.

If the specified factor is too large for any of the expanded traces (depending on their current source), it is reduced to an acceptable value and only then applied to the traces. The VAB bit (bit 2) in the STB register is set when a factor outside the legal range is specified.

The HOR_MAGNIFY query returns the current magnification factor for the specified expansion function.

COMMAND SYNTAX

```
<exp_trace>: Hor_MAGnify <factor>
<exp_trace>: = {TA, TB, TC, TD}
<factor> : = 1 to 2,000,000 The range of <factor> it is related to the current timebase and the range of the timebase
```

QUERY SYNTAX

```
<exp_trace> : Hor_MAGnify?
```

RESPONSE FORMAT

```
<exp_trace>: Hor_MAGnify <factor>
```

EXAMPLE

The following instruction horizontally magnifies Trace A (TA) by a factor of 5:

```
Command message:
TA: HMAG 5.00
```

RELATED COMMANDS

HPOS
DESCRIPTION

The HOR_POSITION command horizontally positions the geometric center of the intensified zone on the source trace. Allowed positions range from division -7 to 7. If this would cause the horizontal position of any expanded trace to go outside the left or right screen boundaries, the difference of positions is adapted and then applied to the traces.

The VAB bit (bit 2) in the STB register is set if a value outside the legal range is specified.

The HOR_POSITION query returns the position of the geometric center of the intensified zone on the source trace.

COMMAND SYNTAX

\[
\text{<exp_trace>: Hor_POSITION <hor_position>}
\]

\[
\text{<exp_trace>: = {TA, TB, TC, TD}}
\]

\[
\text{<hor_position>: = -7 to 7 DIV (The range of the value is related to the size of the screen). the range of the <hor_position> is related to the magnification factors of command HMAG. While the range after magnifying beyond the screen could display, it will be adjusted to the proper value.}
\]

QUERY SYNTAX

\[
\text{<exp_trace>: Hor_POSITION?}
\]

RESPONSE FORMAT

\[
\text{<exp_trace>: Hor_POSITION <hor_position>}
\]

EXAMPLE

The following instruction positions the center of the intensified zone on the trace currently viewed by Trace A (TA) at division 3:

Command message:

TA: HPOS 3

RELATED COMMANDS

HMAG
HARD COPY

HARDCOPY_SETUP, HCSU
Command /Query

DESCRIPTION
The HARDCOPY_SETUP command configures the instrument’s hard-copy driver.

COMMAND SYNTAX
HCSU PSIZE, <page_size>,
ISIZE, <image_size>,
FORMAT, <format>, BCKG,
<bckg>, PRTKEY, <printkey>

<page_size> := {DEFAULT}
<printkey> := {SAVE, PRINT}
<format> := {PORTRAIT, LANDSCAPE}
<bckg> := {BLACK, WHITE}
<image_size> := {DEFAULT, A4, LETTER}.

QUERY SYNTAX
HCSU?

RESPONSE FORMAT
HCSU PSIZE, <page_size>, ISIZE,
<image_size>, FORMAT, <format>, BCKG,
<bckg>, PRTKEY, <printkey>

EXAMPLE
The following example selects PORTRAIT format, sets the size of the image to “6*8CM”:

Command message:
HCSU ISIZE, 6*8CM, FORMAT, PORTRAIT

RELATED COMMANDS
SCDP
MISCELLANEOUS

DESCRIPTION
The *IDN? query is used for identification purposes. The response consists of four different fields providing information on the manufacturer, the scope model, the serial number and the firmware revision level.

QUERY SYNTAX
*IDN?

RESPONSE FORMAT
*IDN SIGLENT, <model>, <serial_number>, <firmware_level>

- <model> := A eleven characters model identifier
- <serial_number> := A 14-digit decimal code
- <firmware_level> := similar to k.xx.yy.zz

EXAMPLE
This example issues an identification request to the scope:

Command message:
*IDN?

Response message:
*IDN
SIGLENT SDS1102CML,SDS00002110025, 3.01.01.22
DESCRIPTION

The INTENSITY command sets the intensity level of the grid or the trace.

The intensity level is expressed as a percentage (PCT). A level of 100 PCT corresponds to the maximum intensity whilst a level of 0 PCT sets the intensity to its minimum value. (The minimum value of the trace is 30 PCT)

The response to the INTENSITY? Query indicates the grid and trace intensity levels.

COMMAND SYNTAX

INTenSity GRID, <value>, TRACE, <value>

<value> := 0 (or 30) to 100 [PCT]

Note 1: Parameters are grouped in pairs. The first of the pair names the variable to be modified, whilst the second gives the new value to be assigned. Pairs may be given in any order and be restricted to those variables to be changed.

Note 2: The suffix PCT is optional.

QUERY SYNTAX

INTenSity?

RESPONSE FORMAT

INTenSity TRACE, <value>, GRID, <value>

EXAMPLE

The following instruction enables remote control of the intensity, and changes the grid intensity level to 75%:

Command message:
INTS GRID, 75
DESCRIPTION

The INR? query reads and clears the contents of the INternal state change Register(INR). The INR register (table below) records the completion of various internal operations and state transitions.

Note: This command only supports 0 bit and 13 bit.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15...14</td>
<td>0</td>
<td>Reserved for future use</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>Trigger is ready</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Pass/Fail test detected desired outcome</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>Waveform processing has terminated in Trace D</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>Waveform processing has terminated in Trace C</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>Waveform processing has terminated in Trace B</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>Waveform processing has terminated in Trace A</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>Memory card, floppy or hard disk exchange has been detected</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Memory card, floppy or hard disk has become full in “AutoStore Fill” mode</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Reserved for LeCroy use</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>A segment of a sequence waveform has been acquired</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>A time-out has occurred in a data block transfer</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>A return to the local state is detected</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>A screen dump has terminated</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>A new signal has been acquired</td>
</tr>
</tbody>
</table>

QUERY SYNTAX

INR?

RESPONSE FORMAT

INR <value>

<value> : = 0 to 65535

EXAMPLE

If we send INR? query after have triggered the INR register:
Command message 1:
INR?

Response message 1:
INR 8913

If we send INR? query while the instrument didn’t trigger, the INR register:

Command message 2:
INR?

Response message 2:
INR 8912

If we send INR? query after have sent a INR? query and the mode of the instrument is STOP
The INR register:

Command message 3:
INR?

Response message 3:
INR 0

If we send INR? query while there is no and then make the instrument triggered. Finally we send another INR? query the INR register:

Command message 4:
INR?

Response message 4:
INR 1

RELATED COMMANDS

ALL_STATUS?, *CLS
DESCRIPTION

The INVERTSET command inverts the specified traces or the waveform of math.

The response to the INVERTSET? query indicates whether the specified waveform is invert.

COMMAND SYNTAX

```
<trace>:INVERTSET < state >
< trace > := \{C1,C2,C3,C4,MATH\}
< state > := \{ON,OFF\}
```

QUERY SYNTAX

```
<trace>:INVERTSET?
```

RESPONSE FORMAT

```
<trace>:INVERTSET < state >
```

EXAMPLE

The following instruction inverts the trace of channel 1:

Command message:

C1:INVS ON
DESCRIPTION

The LOCK command enables or disables the panel keyboard of the instrument.

When any command or query is executed in either local or remote state, the functions of the panel keys except “FORCE” are not available. When the panel keyboard of the instrument is locked, press “FORCE” key can enable the panel keyboard function.

The LOCK? query returns the status of the panel keyboard of the instrument.

COMMAND SYNTAX

\[\text{LOCK } < \text{status} > \]

<status> := {ON,OFF}

QUERY SYNTAX

\[\text{LOCK?} \]

RESPONSE FORMAT

\[\text{LOCK } < \text{status} > \]

EXAMPLE

The following instruction enables the functions of the panel keys:

Command message:

LOCK ON
DESCRIPTION

The MATH_VERT_POS command controls the vertical position of the math waveform with specified source.

The FFT waveform isn’t included. But we have another command which called VPOS to control its vertical position.

The response to the MATH_VERT_POS? query indicates the value of the vertical position of the math waveform.

COMMAND SYNTAX

MATH_VERT_POS <position>
<position> := the position is related to the position of the screen center. For example, if we set the position of MTVP to 50. The math waveform will be displayed 1 grid up to the vertical center of the screen. Namely one grid is 50.

QUERY SYNTAX

MATH_VERT_POS?

RESPONSE FORMAT

MATH_VERT_POS < position >

EXAMPLE

The following instruction changes the vertical position of the math waveform to 1 grid up to the screen vertical centre:

Command message:
MTVP 50
DESCRIPTION

The MATH_VERT_DIV command controls the vertical sensitivity of the math waveform of specified source. We can only set the value of existing FFT waveform isn’t included.

The response to the MATH_VERT_DIV? query indicates the specified scale of math waveform of specified source.

COMMAND SYNTAX

MATH_VERT_DIV < scale >
< scale >:= 1PV/div ~ 100V/div.

QUERY SYNTAX

MATH_VERT_DIV?

RESPONSE FORMAT

MATH_VERT_DIV < scale >

EXAMPLE

The following instruction changes the vertical sensitivity of the math waveform of specified source to 1V/div:

Command message:
MTVD 1V
FUNCTION

MEMORY_SIZE, MSIZ
Command / Query

DESCRIPTION
The MEMORY_SIZE command sets the maximal depth of memory.

The response to the MEMORY_SIZE? query the maximal depth of memory.

COMMAND SYNTAX
MEMORY_SIZE <size>
<size> := {7K, 14K, 70K, 140K, 700K, 1.4M, 7M, 14M}

QUERY SYNTAX
MEMORY_SIZE?

RESPONSE FORMAT
MEMORY_SIZE <size>

EXAMPLE
The following instruction sets the maximal depth of memory to 14M.

Command message:
MSIZ 14M
DESCRIPTION

The OFFSET command allows adjustment of the vertical offset of the specified input channel. The maximum ranges depend on the fixed sensitivity setting.

If an out-of-range value is entered, the oscilloscope is set to the closest possible value and the VAB bit (bit 2) in the STB register is set.

The OFFSET? query returns the offset value of the specified channel.

COMMAND SYNTAX

<channel>: OFfSeT <offset>
<channel> : = {C1, C2, C3,C4}
<offset> : = See the SDS2000 specifications.

QUERY SYNTAX

<channel>: OFfSeT?

RESPONSE FORMAT

<channel>: OFfSeT <offset>

EXAMPLE

The following command sets the offset of Channel 2 to -3 V:

Command message:
C2: OFST -3V
DESCRIPTION

The *OPC (OPeration Complete) command sets to true the OPC bit (bit 0) in the standard Event Status Register (ESR). This command has no other effect on the operation of the oscilloscope because the instrument starts parsing a command or query only after it has completely processed the previous command or query.

The *OPC? query always responds with the ASCII character “1” because the oscilloscope only responds to the query when the previous command has been entirely executed.

COMMAND SYNTAX

*OPC

QUERY SYNTAX

*OPC?

RESPONSE FORMAT

*OPC 1
DESCRIPTION

The *OPT? query identifies oscilloscope options: installed software or hardware that is additional to the standard instrument configuration. The response consists of a series of response fields listing all the installed options.

QUERY SYNTAX

*OPT?

RESPONSE FORMAT

*OPT <option>

NOTE: If no option is present, the character 0 will be returned.

EXAMPLE: The following instruction queries the installed options:

*OPT?
Return: *OPT RS232,NET,USBTMC
DESCRIPTION
The PARAMETER_CLR command clears the P/F test counter and starts it again at 0.

COMMAND SYNTAX
PARAMETER_CLR

RELATED COMMANDS
PARAMETER_VALUE, PFDD
The PARAMETER_CUSTOM command controls the parameters that have customizable qualifiers.

Note: The measured value of a parameter setup with PACU may be read using PAVA?

COMMAND SYNTAX

```
PArameter_CUstom <line>, <parameter>,<qualifier><line> := 1 to 5
<parameter> := {PKPK, MAX, MIN, AMPL, TOP, BASE, CMEAN, MEAN, RMS, CRMS, OVSN, FPRE, OVSP, RPRE, PER, FREQ, PWID, NWID, RISE, FALL, WID, DUTY, NDUTY, PHASE, FRR, FRF, FFR, FFF, LRR, LRFF, LFR, LFF}
<qualifier> := {C1, C2, C3, C4, C1-C2, C1-C3, C1-C4, C2-C3, C2-C4, C3-C4}
```

Measurement qualifier specific to each(source option)

QUERY SYNTAX

```
PArameter_CUstom? <line>
```

RESPONSE FORMAT

```
PArameter_Custom <line>, <parameter>, <qualifier>
```

EXAMPLE

Command Example PACU 2, PKPK, C1
Query/Response Examples PACU? 2 returns: PACU 2, PKPK, C1
PAVA? CUST2 returns: C2: PAVA CUST2, 160.00mV

RELATED

COMMANDS PARAMETER_CLR, PARAMETER_VALUE
DESCRIPTION

The PARAMETER_VALUE query returns the measurement values.

Parameters Available on All Models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>all parameters</td>
</tr>
<tr>
<td>AMPL</td>
<td>amplitude</td>
</tr>
<tr>
<td>BASE</td>
<td>base</td>
</tr>
<tr>
<td>CMEAN</td>
<td>mean for cyclic waveform</td>
</tr>
<tr>
<td>CRMS</td>
<td>root mean square for cyclic part of waveform</td>
</tr>
<tr>
<td>DUTY</td>
<td>duty cycle</td>
</tr>
<tr>
<td>FALL</td>
<td>falltime</td>
</tr>
<tr>
<td>FREQ</td>
<td>frequency</td>
</tr>
<tr>
<td>FPRE</td>
<td>(Vmin-Vbase)/ Vamp before the waveform rising transition</td>
</tr>
<tr>
<td>MAX</td>
<td>maximum</td>
</tr>
<tr>
<td>MIN</td>
<td>minimum</td>
</tr>
<tr>
<td>MEAN</td>
<td>mean</td>
</tr>
<tr>
<td>NDUTY</td>
<td>negative duty cycle</td>
</tr>
<tr>
<td>NWID</td>
<td>negative width</td>
</tr>
<tr>
<td>OVSN</td>
<td>negative overshoot</td>
</tr>
<tr>
<td>OVSP</td>
<td>positive overshoot</td>
</tr>
<tr>
<td>PER</td>
<td>period</td>
</tr>
<tr>
<td>PWID</td>
<td>positive width</td>
</tr>
<tr>
<td>PKPK</td>
<td>peak-to-peak</td>
</tr>
<tr>
<td>RMS</td>
<td>root mean square</td>
</tr>
<tr>
<td>RISE</td>
<td>risetime</td>
</tr>
<tr>
<td>TOP</td>
<td>top</td>
</tr>
<tr>
<td>WID</td>
<td>width</td>
</tr>
</tbody>
</table>

Custom Parameters Defined using PARAMETER_CUSTOM Command

<table>
<thead>
<tr>
<th>CUST1</th>
<th>CUST2</th>
<th>CUST3</th>
<th>CUST4</th>
<th>CUST5</th>
</tr>
</thead>
</table>

QUERY SYNTAX

```
<trace>: PARAMETER_VALUE? [<parameter>, ... , <parameter>]
<trace>: = { C1, C2, C3, C4}
<parameter> : = See table of parameter names on previous table.
```

RESPONSE FORMAT

```
<trace>: PARAMETER_VALUE <parameter>, <value> [, ... , <parameter>,<value>]
```

EXAMPLE

The following query reads the risetime of Channel 2

Command message:
C2: PAVA? RISE

Response message:
C2: PAVA RISE, 3.6E-9S

RELATED COMMANDS
CURSOR_MEASURE, CURSOR_SET,
PARAMETER_CUSTOM
DESCRIPTION

The PEAK_DETECT command switches ON or OFF the peak detector built into the acquisition system.

The PEAK_DETECT? query returns the current status of the peak detector.

COMMAND SYNTAX

Peak_DETect <state>

<state> := {ON, OFF}

QUERY SYNTAX

Peak_DETect?

RESPONSE FORMAT

PDET <state>

EXAMPLE

The following instruction turns on the peak detector:

Command message:

PDET ON
DESCRIPTION
The PERSIST command enables or disables the persistence display mode.

COMMAND SYNTAX
PERSist <mode>
<mode> : = {ON, OFF}

QUERY SYNTAX
PERSist?

RESPONSE FORMAT
PERSist <mode>

EXAMPLE
The following code turns the persistence display ON:
Command message:
PERS ON

RELATED COMMANDS
PERSIST_SETUP
DESCRIPTION

The PERSIST_SETUP command selects the persistence duration of the display, in seconds, in persistence mode.

The PERSIST_SETUP? query indicates the current status of the persistence.

COMMAND SYNTAX

PErsist_SetUp <time>

<time>: = {1, 5, 10, 30, Infinite}

QUERY SYNTAX

PErsist_SetUp?

RESPONSE FORMAT

PErsist_SetUp <time>

EXAMPLE

The following instruction sets the variable persistence at 5 Seconds:

Command message:
PESU 5

RELATED COMMANDS

PERSIST
SAVE/RECALL SETUP

PANEL_SETUP, PNSU
Command /Query

DESCRIPTION
The PANEL_SETUP command complements the *SAV or *RST commands. PANEL_SETUP allows you to archive panel setups in encoded form on external storage media. Only setup data read by the PNSU? query can be recalled into the oscilloscope.

COMMAND SYNTAX
Panel_SetUp <setup>

<setup> := A setup previously read by PNSU?

QUERY SYNTAX
Panel_SetUp?

RESPONSE FORMAT
Panel_SetUp <setup>

EXAMPLE
The following instruction saves the oscilloscope’s current panel setup in the file PANEL.SET:

Command message:
PNSU?

RELATED COMMANDS
*RCL, *SAV
DESCRIPTION
The PF_DISPLAY command enables or disables to turn the test and display the message in the pass/fail option.

The response to the PF_DISPLAY? query indicates whether the test is enabled and the message of pass/fail is displayed.

COMMAND SYNTAX
PF_DISPLAY TEST,<state>,DISPLAY,<state>
<state> := {ON, OFF}

QUERY SYNTAX
PF_DISPLAY TEST?

RESPONSE FORMAT
PF_DISPLAY TEST <state>,DISPLAY,<state>

EXAMPLE
The following instruction enables to turn on the test and display the message of pass/fail:

Command message:
PFDS TEST,ON,DISPLAY,ON
FUNCTION

PF_SET, PFST

Command /Query

DESCRIPTION

The PF_SET command sets the X mask and the Y mask of the mask setting in the pass/fail option.

The response to the PF_SET? query indicates the value of the X mask and the Y mask.

COMMAND SYNTAX

```
PF_SET XMASK, <div>, YMASK, <div>
<div> : = 0.04div~4.0div
```

QUERY SYNTAX

```
PF_SET?
```

RESPONSE FORMAT

```
PF_SET XMASK, <div>, YMASK, <div>
```

EXAMPLE

The following instruction sets the X mask to 0.4div and the Y mask to 0.5div of the mask setting in the pass/fail option:

Command message:
PFST XMASK,0.4, YMASK,0.5

RELATED COMMANDS

PFSL PFST
DESCRIPTION
The PF_SAVELOAD command saves or recalls the created mask setting.

COMMAND SYNTAX
PF_SAVELOAD LOCATION,<location>,ACTION,<action>
The <location> means to save the created mask setting to the internal memories or the external memories.

<location> := {IN,EX}
IN means to save the mask setting to the internal memories while EX means the external memories.

<action> := {SAVE,LOAD}
SAVE means to save the mask setting while LOAD means recall the stored mask setting.

EXAMPLE
The following instruction saves the mask setting to the internal memories:

Command message:
PFSL LOCATION,IN,ACTION,SAVE

RELATED COMMANDS
PFCM
FUNCTION

PF_CONTROL, PFCT

Command / Query

DESCRIPTION

The PF_CONTROL command controls the pass/fail controlling options: “operate”, “output” and the “stop on output”.

See instrument’s Operator Manual for these options

The response to the PF_CONTROL? query indicates the controlling options of the pass/fail.

COMMAND SYNTAX

PF_CONTROL
TRACE,<trace>,CONTROL,<control>,OUTP
UT,<output>,OUTPUTSTOP,<state>
<trace> : = {C1,C2,C3,C4}
<control> : = {START,STOP}
<output> : = {FAIL,PASS}
<state> : = {ON,OFF}

QUERY SYNTAX

PF_CONTROL?

RESPONSE FORMAT

PF_CONTROL
TRACE,<trace>,CONTROL,<control>,
OUTPUT,<output>,OUTPUTSTOP,<state>

EXAMPLE

The following instruction sets source to channel 1, “operate” to “start”, “output” to “pass” and “stop on output” to “off”:

Command message:

PFCT TRACE,C1,CONTROL,START,
OUTPUT,PASS,OUTPUTSTOP,OFF
FUNCTION

PF_CREATEM, PFCM
Command

DESCRIPTION
The PF_CREATEM command creates the mask of the pass/fail.

COMMAND SYNTAX
PF_CREATEM

EXAMPLE
The following instruction creates the mask of the pass/fail:

Command message:
PFCM

RELATED COMMANDS
PFSL PFST
DESCRIPTION
The PF_DATADIS? query returns the number of the fail, pass and total number that the screen showing.

QUERY SYNTAX
PF_DATADIS?

RESPONSE FORMAT
```
PF_DATADIS
FAIL,<num>,PASS,<num>,total,<num>
```

EXAMPLE
The following instruction returns the number of the message display of the pass/fail:

Command message:
```
PFDD FAIL,0,PASS,0,TOTAL,0
```

RELATED COMMANDS
PACL
SAVE/RECALL SETUP

*RCL Command

DESCRIPTION

The *RCL command sets the state of the instrument, using one of the ten non-volatile panel setups, by recalling the complete front-panel setup of the instrument. Panel setup 0 corresponds to the default panel setup.

The *RCL command produces the opposite effect of the *SAV command.

If the desired panel setup is not acceptable, the EXecution error status Register (EXR) is set and the EXE bit of the standard Event Status Register (ESR) is set.

COMMAND SYNTAX

*RCL <panel_setup>

<p>:= 0 to 20

EXAMPLE

The following recalls the instrument setup previously stored in panel setup 3:

Command message:

*RCL 3

RELATED COMMANDS

PANEL_SETUP, *SAV, EXR
SAVE/RECALL SETUP

RECALL_PANEL, RCPN
Command

DESCRIPTION
The RECALL_PANEL command recalls a front-panel setup from the current directory on mass storage.

COMMAND SYNTAX
ReCall_PaNel DISK, <device>, FILE, ‘<filename>’
<device> : = {UDSK}
<filename> : = A waveform file under a legal DOS path. A filename-string of up to eight characters, with the extension “.SET”. (This can include the ‘/’ character to define the root directory.)

EXAMPLE
The following recalls the front-panel setup from file SEAN. SET in a USB memory device:

Command message:
RCPN DISK, UDSK, FILE, ‘SEAN. SET’

RELATED COMMANDS
PANEL_SETUP, *SAV, STORE_PANEL, *RCL
SAVE/RECALL SETUP

DESCRIPTION
The *RST command initiates a device reset. The *RST sets recalls the default setup.

COMMAND SYNTAX
*RST

EXAMPLE
This example resets the oscilloscope:

Command message:
*RST

RELATED COMMANDS
*CAL, *RCL
FUNCTION

DESCRIPTION

The REF_SET command sets the reference waveform and its options.

The response to the REF_SET? query indicates whether the specified reference waveform is turned on.

COMMAND SYNTAX

```
REF_SET TRACE,<trace>REF,<ref>,state,
<state>,SAVE,DO
<trace> := {C1,C2,C3,C4,MATH}
<ref> := {RA,RB,RC,RD}
```

The Rx(x is A,B,C,D) is that which one can be stored or displayed

```
<state> := {ON,OFF}
```

The state enables or disables to display the specified reference waveform.

If the command syntax have the option that SAVE,DO, means that the specified trace will be saved to the specified reference waveform.

QUERY SYNTAX

```
REF_SET? REF,<ref>
```

RESPONSE FORMAT

```
REF_SET REF,<ref>,STATE,<state>
```

EXAMPLE

The following instruction saves the channel 1 waveform to the REFA, and turns on REFA:

Command message:

```
REFS TRACE,C1,REF,RA,
STATE,ON,SAVE,DO
```
SAVE/RECALL SETUP

*SAV Command

DESCRIPTION

The *SAV command stores the current state of the instrument in internal memory. The *SAV command stores the complete front-panel setup of the instrument at the time the command is issued.

COMMAND SYNTAX

*SAV <panel_setup>

<panel_setup>: = 1 to 20

EXAMPLE

The following saves the current instrument setup in Panel Setup 3:

Command message:

*SAV 3

RELATED COMMANDS

PANEL_SETUP, *RCL
DESCRIPTION
The SCREEN_DUMP command is used to obtain the screen information of image format.

COMMAND SYNTAX
SCreen_DumP

EXAMPLE
The following command transfers the screen information of image format to the controller

Command message:
SCDP
DESCRIPTION

The SCREEN_SAVE command controls the automatic Screen Saver, which automatically shuts down the internal color monitor after a preset time.

The response to the SCREEN_SAVE? query indicates whether the automatic screen saver feature is on or off.

Note: When the screen save is in effect, the oscilloscope is still fully functional.

COMMAND SYNTAX

SCreen_SaVe <enabled>
<enabled> : = {YES, NO}

QUERY SYNTAX

SCreen_SaVe?

RESPONSE FORMAT

SCreen_SaVe <enabled>

EXAMPLE

The following enables the automatic screen saver:

Command message:
SCSV YES
DESCRIPTION
The *SRE command sets the Service Request Enable register (SRE). This command allows the user to specify which summary message bit(s) in the STB register will generate a service request.

A summary message bit is enabled by writing a ‘1’ into the corresponding bit location. Conversely, writing a ‘0’ into a given bit location prevents the associated event from generating a service request (SRQ). Clearing the SRE register disables SRQ interrupts.

The *SRE? query returns a value that, when converted to a binary number, represents the bit settings of the SRE register.

Note: that bit 6 (MSS) cannot be set and its returned value is always zero.

COMMAND SYNTAX
*SRE <value>
<value> := 0 to 255

QUERY SYNTAX
*SRE?

RESPONSE FORMAT
*SRE <value>

EXAMPLE
The following instruction allows an SRQ to be generated as soon as the MAV summary bit (bit 4, i.e. decimal 16) or the INB summary bit (bit 0, i.e. decimal 1) in the STB register, or both, are set. Summing these two values yields the SRE mask 16+1 = 17.

Command message:
*SRE 17
DESCRIPTION

The *STB? query reads the contents of the 488.1 defined status register (STB), and the Master Summary Status (MSS). The response represents the values of bits 0 to 5 and 7 of the Status Byte register and the MSS summary message.

The response to a *STB? Query is identical to the response of a serial poll except that the MSS summary message appears in bit 6 in place of the RQS message.

QUERY SYNTAX

*STB?

RESPONSE FORMAT

*STB <value>

<value> : = 0 to 255

EXAMPLE

The following reads the status byte register:

Command message:

*STB?

Response message:

*STB 0

RELATED COMMANDS

ALL_STATUS, *CLS, *SRE
ADDITIONAL INFORMATION

Status Byte Register (STB)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Value</th>
<th>Bit Name</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>DIO7</td>
<td>0 reserved for future use</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>MSS/RQS</td>
<td>at least 1 bit in STB masked by SRE is 1 service is requested</td>
<td>(1) (2)</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>MSS</td>
<td>MSS=1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>RQS</td>
<td>RQS=1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>ESB</td>
<td>1 an ESR enabled event has occurred</td>
<td>(3)</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>MAV</td>
<td>1 output queue is not empty</td>
<td>(4)</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>DIO3</td>
<td>0 reserved</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>VAB</td>
<td>1 a command data value has been adapted</td>
<td>(5)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>DIO1</td>
<td>0 reserved</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>INB</td>
<td>1 an enabled INternal state change has occurred</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Notes

1. The Master Summary Status (MSS) indicates that the instrument requests service, whilst the Service Request status — when set — specifies that the oscilloscope issued a service request. Bit position 6 depends on the polling method:
 - Bit 6 = MSS if an *STB? Query is received
 - Bit 6 = RQS if serial polling is conducted

2. Example: If SRE=10 and STB=10 then MSS=1. If SRE=010 and STB=100 then MSS=0.

3. The Event Status Bit (ESB) indicates whether or not one or more of the enabled IEEE 488.2 events have occurred since the last reading or clearing of the Standard Event Status Register (ESR). ESB is set if an enabled event becomes true (1).

4. The Message AVailable bit (MAV) indicates whether or not the Output queue is empty. The MAV summary bit is set true (1) whenever a data byte resides in the Output queue.

5. The Value Adapted Bit (VAB) is set true (1) whenever a data value in a command has been adapted to the nearest legal value. For instance, the VAB bit would be set if the timebase is redefined as 2 μs/div since the adapted value is 2.5 μs/div.

6. The INternal state Bit (INB) is set true (1) whenever certain enabled internal states are entered. For further information, refer to the INR query.
DESCRIPTION

The STOP command immediately stops the acquisition of a signal. If the trigger mode is AUTO or NORM.

COMMAND SYNTAX

STOP

EXAMPLE

The following stops the acquisition process:

Command message:
STOP

RELATED COMMANDS

ARM_ACQUISITION, TRIG_MODE, WAIT
DESCRIPTION

The STORE command stores the contents of the specified trace into the current directory in a USB memory device.

COMMAND SYNTAX

STOre <trace>

<trace>: = {TA, TB, TC, TD, C1, C2, C3, C4, ALL_DISPLAYED}

<dest>: = {UDSK}

Note: If the STORE command is sent without any argument, and the current trace isn’t enabled, the current trace will be enabled and stored in the Store Setup. This setup can be modified using the STORE_SETUP command.

EXAMPLE

The following command stores the contents of Channel 1(C1) into USB memory device:

Command message:
STO C1, UDSK

The following command stores all currently displayed waveforms onto the USB memory device:

Command message:
STO ALL_DISPLAYED, UDSK

RELATED COMMANDS

STORE_SETUP, RECALL
DESCRIPTION
The STORE_PANEL command stores the complete front-panel setup of the instrument, at the time the command is issued, into a file on the specified-DOS path directory in a USB memory device.

COMMAND SYNTAX
STore_PaNel DISK, <device>, FILE, ‘<filename>’
<device>: ={UDSK}
< directory >: =A legal DOS path or filename. A filename -string of up to 8 characters, with the extension “.SET”. (This can include the ‘/’ character to define the root directory.)

EXAMPLE
The following code saves the current instrument setup to root directory of the USB memory device in a file called “SEAN.SET”:

Command message:
STore_PaNel DISK,UDSK,FILE,’SEAN.SET’

The following code saves the current instrument setup to specified-directory of the USB memory device in a file called “SEAN.SET”:

Command message:
STore_PaNel DISK,UDSK,FILE,’/AAA/SEAN’

RELATED COMMANDS
*SAV, RECALL_PANEL, *RCL
DESCRIPTION
The STORE_SETUP command controls the way in which traces will be stored. A single trace or all displayed traces may be enabled for storage.

COMMAND SYNTAX
STore_Setup [trace], <dest>
<trace> := {C1, C2, C3, C4, ALL_DISPLAYED}
<dest> := {UDSK}

QUERY SYNTAX
STore_Setup?

RESPONSE FORMAT
STore_Setup <trace>, <dest>

EXAMPLE
The following command selects Channel 1 to be stored.

Command message:
STST C1, UDSK

RELATED COMMANDS
STORE, INR
ACQUISITION

SAMPLE_STATUS, SAST

Query

DESCRIPTION
The SAST? query the acquisition status of the scope.

QUERY SYNTAX
SAST?

RESPONSE FORMAT
SAST < status >

EXAMPLE
The following command reads the acquisition status of the scope.

Command message:
SAST?

Response message:
SAST trig’d
ACQUISITION

DESCRIPTION
The SARA? query returns the sample rate of the scope.

QUERY SYNTAX
SARA?

RESPONSE FORMAT
SARA <value>

EXAMPLE
The following command reads the sample rate of the scope.

Command message:
SARA?

Response message:
SARA 500.0kSa
ACQUISITION

SAMPLE_NUM, SANU

Query

DESCRIPTION

The SANU? query returns the number of sampled points available from last acquisition and the trigger position.

QUERY SYNTAX

SANU? <channel>

RESPONSE FORMAT

SANU <value>

EXAMPLE

The following command reads the number of sampled points available from last acquisition from the Channel 2.

Command message:
SANU? C2

Response message:
SANU 6000
DESCRIPTION
The SKEW command sets the skew value of the specified trace.

The response to the SKEW? query indicates the skew value of the specified trace.

COMMAND SYNTAX
<trace>:SKEW <skew>
<trace> := {C1,C2,C3,C4 }
<skew> := it is a value about time.

QUERY SYNTAX
<trace>:SKEW?

RESPONSE FORMAT
<trace>:SKEW <skew>

EXAMPLE
The following command sets channel 1 skew value to 3ns

Command message:
C1:SKEW 3NS
The SINXX_SAMPLE command sets the way of interpolation.

The response to the SINXX_SAMPLE? query indicates the way of interpolation.

COMMAND SYNTAX

SINXX_SAMPLE, <state>

<state> := {ON, OFF}

ON means sine interpolation, and OFF means linear interpolation.

QUERY SYNTAX

SINXX_SAMPLE?

RESPONSE FORMAT

SINXX_SAMPLE <state>

EXAMPLE

The following instruction sets the way of the interpolation to sine interpolation:

Command message:
SXSA ON
DESCRIPTION

The TIME_DIV command modifies the timebase setting. The new timebase setting may be specified with suffixes: NS for nanoseconds, US for microseconds, MS for milliseconds, S for seconds, or KS for kiloseconds. An out-of-range value causes the VAB bit (bit 2) in the STB register to be set.

The TIME_DIV? query returns the current timebase setting.

COMMAND SYNTAX

```
Time_DIV <value>
```

<value>:={1NS,2NS,5NS,10NS,20NS,50NS,100NS,200NS,500NS,1US,2US,5US,10US,20US,50US,100US,200US,500US,1MS,2MS,5MS,10MS,20MS,50MS,100MS,200MS,500MS,1S,2S,5S,10S,20S,50S}

QUERY SYNTAX

```
Time_DIV?
```

RESPONSE FORMAT

```
Time_DIV <value>
```

EXAMPLE

The following sets the time base to 500 μs/div:

Command message:

```
TDIV 500US
```

RELATED COMMANDS

TRIG_DELAY, TRIG_MODE
DESCRIPTION

The TEMPLATE? query produces a copy of the template that describes the various logical entities making up a complete waveform. In particular, the template describes in full detail the variables contained in the descriptor part of a waveform.

QUERY SYNTAX

TeMPLate?

RESPONSE FORMAT

TeMPLate “<template>”

<template> := A variable length string detailing the structure of a waveform.

RELATED COMMANDS

WF
DESCRIPTION

The TRACE command enables or disables the display of a trace. An environment error is set if an attempt is made to display more than four waveforms.

The TRACE? query indicates whether the specified trace is displayed or not.

COMMAND SYNTAX

<trace>: TRA<mode>
<trace> := \{C1, C2, C3, C4, TA, TB, TC, TD\}
<mode> := \{ON, OFF\}

QUERY SYNTAX

<trace>: TRA?

RESPONSE FORMAT

<trace>: TRA<mode>

EXAMPLE

The following command displays Channel 1 (C1):

Command message:
C1: TRA ON
DESCRIPTION
The *TRG command executes an ARM command.

COMMAND SYNTAX
*TRG

EXAMPLE
The following command enables signal acquisition:

Command message:
*TRG

RELATED COMMANDS
ARM_ACQUISITION, STOP, WAIT
The TRIG_COUPLING command sets the coupling mode of the specified trigger source.

The TRIG_COUPLING? query returns the trigger coupling of the selected source.

COMMAND SYNTAX

<trig_source>: TRig_CouPling <trig_coupling>
<trig_source>: = {C1, C2, C3, C4, EX, EX5, LINE}
<trig_coupling>: = {AC, DC, HFREJ, LFREJ}

QUERY SYNTAX

<trig_source>: TRig_CouPling?

RESPONSE FORMAT

<trig_source>: TRig_CouPling <trig_coupling>

EXAMPLE

The following command sets the coupling mode of the trigger source Channel 2 to AC:

Command message:
C2: TRCP AC

RELATED COMMANDS

TRIG_COUPLING, TRIG_DELAY, TRIG_LEVEL, TRIG_MODE, TRIG_SELECT, TRIG_SLOPE
DESCRIPTION

The TRIG_DELAY command sets the time at which the trigger is to occur with respect to the first acquired data point.

This mode is called pre-trigger acquisition, as data are acquired before the trigger occurs. Negative trigger delays must be given in seconds. This mode is called post-trigger acquisition, as the data are acquired after the trigger has occurred.

If a value outside the range, the trigger time will be set to the nearest limit and the VAB bit (bit 2) will be set in the STB register. The response to the TRIG_DELAY? query indicates the trigger time with respect to the first acquired data point.

COMMAND SYNTAX

TRig_Delay <value>

的价值范围与时间基相关。

Note: The suffix S is optional and assumed.

QUERY SYNTAX

TRig_Delay?

RESPONSE FORMAT

TRig_Delay <value>

EXAMPLE

The following command sets the trigger delay to -2ms (posttrigger):

Command message:
TRDL -2MS

RELATED COMMANDS

TIME_DIV, TRIG_COUPLING, TRIG_LEVEL, TRIG_MODE, TRIG_SELECT, TRIG_SLOPE
DESCRIPTION

The TRIG_LEVEL command adjusts the trigger level of the specified trigger source. An out-of-range value will be adjusted to the closest legal value and will cause the VAB bit (bit 2) in the STB register to be set.

The TRIG_LEVEL? query returns the current trigger level.

COMMAND SYNTAX

```
<trig_source>: TRig_LeVel <trig_level>
<trig_source>: = {C1, C2, C3, C4, EX, EX5}
<trig_level>: = -4.5DIV* volt/div to 4.5DIV * volt/div
```

Note: The suffix V is optional and assumed.

QUERY SYNTAX

```
<trig_source>: TRig_LeVel?
```

RESPONSE FORMAT

```
<trig_source>: TRig_LeVel <trig_level>
```

EXAMPLE

The following code adjusts the trigger level of Channel 3 to 52.00mv:

Command message:
C3:TRig_LeVel 52.00mv

RELATED COMMANDS

TRIG_COUPLING, TRIG_DELAY, TRIG_MODE, TRIG_SELECT, TRIG_SLOPE
ACQUISITION

TRIG_LEVEL2, TRLV2
Command / Query

DESCRIPTION
The TRIG_LEVEL command adjusts the second trigger level of the specified trigger source. If want to use this command, the trigger type must have two trigger lines. An out-of-range value will be adjusted to the closest legal value and will cause the VAB bit (bit 2) in the STB register to be set.

The TRIG_LEVEL? query returns the current trigger level.

COMMAND SYNTAX
<trig_source>: TRig_LeVel2 <trig_level>
<trig_source>: = {C1, C2, C3, C4, EX, EX5}
<trig_level>: = -4.5DIV* volt/div to 4.5DIV* volt/div

Note: The suffix V is optional and assumed.

QUERY SYNTAX
<trig_source>: TRig_LeVel2?

RESPONSE FORMAT
<trig_source>: TRig_LeVel <trig_level>

EXAMPLE
The following code adjusts the trigger level of Channel 3 to 52.00mv:

Command message:
C3:TRig_LeVel 52.00mv

RELATED COMMANDS
TRIG_COUPLING, TRIG_DELAY, TRIG_MODE, TRIG_SELECT, TRIG_SLOPE
DESCRIPTION

The TRIG_MODE command specifies the trigger mode.

The TRIG_MODE? query returns the current trigger mode.

NOTE: STOP is a part of the option of this command, but is not a trigger mode of the instrument.

COMMAND SYNTAX

TRig_MoDe <mode>

<mode>:: = {AUTO, NORM, SINGLE, STOP}

QUERY SYNTAX

TRig_MoDe?

RESPONSE FORMAT

TRig_MoDe <mode>

EXAMPLE

The following selects the normal mode:

Command message:
TRMD NORM

RELATED COMMANDS

ARM_ACQUISITION, STOP, TRIG_SELECT, TRIG_COUPLING, TRIG_LEVEL, TRIG_SLOP
The TRIG_SELECT command selects the condition that will trigger the acquisition of waveforms. Depending on the trigger type, additional parameters must be specified. These additional parameters are grouped in pairs. The first in the pair names the variable to be modified, while the second gives the new value to be assigned. Pairs may be given in any order and restricted to those variables to be changed.

The TRIG_SELECT? query returns the current trigger condition.

Trigger Notation

<table>
<thead>
<tr>
<th>Trigger Type</th>
<th>Description</th>
<th>Parameter</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDGE</td>
<td>Edge</td>
<td>PS</td>
<td>Pulse smaller</td>
</tr>
<tr>
<td>GLIT</td>
<td>Glitch</td>
<td>SR</td>
<td>Source</td>
</tr>
<tr>
<td>HV</td>
<td>Hold value</td>
<td>TI</td>
<td>Time</td>
</tr>
<tr>
<td>HT</td>
<td>Hold type</td>
<td>TV</td>
<td>TV</td>
</tr>
<tr>
<td>IL</td>
<td>Interval larger</td>
<td>CHAR</td>
<td>Characteristics</td>
</tr>
<tr>
<td>INTV</td>
<td>Interval</td>
<td>LPIC</td>
<td>Lines per picture</td>
</tr>
<tr>
<td>IS</td>
<td>Interval smaller</td>
<td>LINE</td>
<td>Line</td>
</tr>
<tr>
<td>PL</td>
<td>Pulse larger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The command is unclear and needs more explanation.

COMMAND SYNTAX

For all but TV Trigger

TRig_SElect

\[
<trig_type>,SR,<source>,QL,<source>,HT,<hold_type>,HV,<hold_value>
\]

\[
<trig_type> := \{ \text{EDGE, GLIT, INTV} \}
\]

\[
<source> := \{ \text{C1, C2, C3, C4, LINE, EX, EX5} \}
\]

\[
<hold_type> := \{ \text{TI, PS, PL, P2, IS} \}
\]
The following selects the EDGE trigger with Channel 1 as trigger source. Hold type and hold-value are chosen as “time” and 1.43US:

Command message:
TRSE EDGE, SR, C1, HT, TI, HV, 1.43US
TV COMMAND SYNTAX

TRig_SELect TV, SR, <source>, FLDC,<field_count>,FLD,<field>,CHAR, <characteristics>, IPIC,<ipic>,ILAC,<ilace>,LINE, <line>

<trig_type>: = {TV}
<source> : = {C1, C2, C3,C4 }
<field_count>: = {1,2,4,8}
<field>=1 to field_count
<characteristics> : = {NTSC,PALSEC,720P/50,720P/60,1080P/50,1080P/60,1080I/50,1080I/60,CUSTOM}
<ipic>=1 to 1500
<ilace>= {1,2,4,8}
<line> : = 1 to 525 (PALSEC) 1 to 625(NTSC)

QUERY SYNTAX

TRig_SELect?

RESPONSE FORMAT

TRig_SELect TV, SR, <source>, CHAR, <characteristic>, LINE, <line>

EXAMPLE

The following sets up the trigger system to trigger on the line 17, of the PAL/SECAM TV signal applied to the external input.

Command message:

TRSE TV, SR, EX, CHAR, PALSEC, LINE, 17

RELATED COMMANDS

TRIG_COUPLING, TRIG_DELAY, TRIG_LEVEL, TRIG_MODE, TRIG_SLOPE
DESCRIPTION

The TRIG_SLOPE command sets the trigger slope of the specified trigger source.

The TRIG_SLOPE? query returns the trigger slope of the selected source.

COMMAND SYNTAX

<trig_source>: TRig_SLope <trig_slope>
<trig_source>: = {C1, C2, C3, C4, EX, EX5}
<trig_slope>: = {NEG, POS, WINDOW}

QUERY SYNTAX

<trig_source> : TRig_Slope?

RESPONSE FORMAT

<trig_source>: TRig_SLope <trig_slope>

EXAMPLE

The following sets the trigger slope of Channel 2 to negative:

Command message:
C2: TRSL NEG

RELATED COMMANDS

TRIG_COUPLING, TRIG_DELAY, TRIG_LEVEL, TRIG_MODE, TRIG_SELECT, TRIG_SLOPE
DESCRIPTION

The TRIG_WINDOW command sets the relative height of the two trigger line of the trigger window type.

The TRIG_WINDOW? query returns relative height of the two trigger line of the trigger window type.

COMMAND SYNTAX

TRig_WIndow <value>

<value>: -4.5DIV* volt/div to 4.5DIV * volt/div

QUERY SYNTAX

TRig_WIndow?

RESPONSE FORMAT

TRig_WIndow <value>

EXAMPLE

The following sets the relative height of the two trigger line of the trigger window type to 2V:

Command message:

TRWI 2V

RELATED COMMANDS

TRIG_LEVEL, TRIG_LEVEL2, TRIG_SELECT
ACQUISITION

TRIG_PATTERN, TRPA
Command /Query

DESCRIPTION
The TRIG_PATTERN command sets the condition of the pattern trigger.

The TRIG_PATTERN? query returns the condition of the pattern trigger.

COMMAND SYNTAX
TRig_PAttern <source>,<status>
[,<source>,<status>][,<source>,<status>][,<source>,<status>],STATE,<condition>
< source >: = {C1, C2, C3, C4}
<status>:= {X,L,H}
< condition >:= {AND, OR, NAND, OR}

QUERY SYNTAX
TRig_PAttern?

RESPONSE FORMAT
TRig_Pattern
<source>,<status>,<source>,<status>,<source>,<status>,<source>,<status>

EXAMPLE
The following sets the channel 2 and channel 3 to low and the condition to AND:

Command message:
TRPA C2,L,C3,L,STATE,AND

RELATED COMMANDS
TRIG_LEVEL, TRIG_LEVEL2, TRIG_SELECT
ACQUISITION

DESCRIPTION

The UNIT command sets the unit of the specified trace.

The UNIT query returns the unit of the specified trace.

COMMAND SYNTAX

`<channel>: UNIT <type>`

`<channel>: = {C1, C2, C3, C4}`

`<type>: = {V,A}`

QUERY SYNTAX

`<channel> : UNIT?`

RESPONSE FORMAT

`<channel>: UNIT <type>`

EXAMPLE

The following command sets the unit of the channel 1 to V:

Command message:

C1: UNIT V
DISPLAY

VERT_POSITION, VPOS
Command / Query

DESCRIPTION
The VERT_POSITION command adjusts the vertical position of the specified FFT trace on the screen. It does not affect the original offset value obtained at acquisition time.

The VERT_POSITION? query returns the current vertical position of the specified FFT trace.

COMMAND SYNTAX
<trace>: Vert_POSITION <display_offset>
<trace>: = {TA, TB, TC, TD}
<display_offset>: = -40 DIV to 40 DIV

Note: The suffix DIV is optional.

QUERY SYNTAX
<trace>: Vert_POSITION?

RESPONSE FORMAT
<trace>: Vert_POSITION <display_offset>

EXAMPLE
The following shifts FFT Trace A (TA) upwards by +3 divisions relative to the position at the time of acquisition:

Command message:
TA: VPOS 3DIV
The VOLT_DIV command sets the vertical sensitivity in Volts/div. The VAB bit (bit 2) in the STB register is set if an out-of-range value is entered.

The VOLT_DIV query returns the vertical sensitivity of the specified channel.

COMMAND SYNTAX

\[
\text{<channel>: Volt_DIV <v_gain>}
\]

\[
\text{<channel>: = \{C1, C2, C3, C4\}}
\]

\[
\text{<v_gain>: = 2mV to 10V}
\]

Note: The suffix V is optional.

QUERY SYNTAX

\[
\text{<channel> : Volt_DIV?}
\]

RESPONSE FORMAT

\[
\text{<channel>: Volt_DIV <v_gain>}
\]

EXAMPLE

The following command sets the vertical sensitivity of channel 1 to 50 mV/div:

Command message:
C1: VDIV 50MV
A WAVEFORM? Query transfers a waveform from the oscilloscope to the controller.

A waveform consists of several distinct entities:

1. the descriptor (DESC)
2. the auxiliary data (DAT1) block
3. the main data (DAT2) block

The WAVEFORM? Query instructs the oscilloscope to transmit a waveform to the controller. The entities may be queried independently. If the “ALL” parameter is specified, all four or five entities are transmitted in one block in the order enumerated above.

Note:
1. The format of the waveform data depends on the current settings specified by the last WAVEFORM_SETUP command.
2. The format of the waveform data can be seen by the TEMPLATE? Query.

QUERY SYNTAX

<trace>: WaveForm?
<trace> := { C1,C2,C3,C4}

RESPONSE FORMAT

<trace>: WaveForm <waveform_data_block>

EXAMPLE

The following command reads waveform data block of Channel 2:
Command message:
C2: WF?

RELATED COMMANDS

WAVEFORM_SETUP
DESCRIPTION

The WAVEFORM_SETUP command specifies the amount of data in a waveform to be transmitted to the controller. The command controls the settings of the parameters listed below.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Sparsing (SP): The sparsing parameter defines the interval between data points. For example: SP = 0 sends all data points, SP = 1 sends all data points, SP = 4 sends every 4th data point.</td>
</tr>
<tr>
<td></td>
<td>Number of points (NP): The number of points parameter indicates how many points should be transmitted. For example: NP = 0 sends all data points, NP = 1 sends 1 data point, NP = 50 sends a maximum of 50 data points, NP = 1001 sends a maximum of 1001 data points.</td>
</tr>
<tr>
<td>NP</td>
<td>First point (FP): The first point parameter specifies the address of the first data point to be sent. For waveforms acquired in sequence mode, this refers to the relative address in the given segment. For example: FP = 0 corresponds to the first data point, FP = 1 corresponds to the second data point, FP = 5000 corresponds to data point 5001.</td>
</tr>
</tbody>
</table>

The WAVEFORM_SETUP? query returns the transfer parameters currently in use.

COMMAND SYNTAX

WaveForm_SetUp SP, <sparsing>, NP, <number>, FP, <point>
QUERY SYNTAX

WaveForm_SetUp?

Note 1: After power-on, SP is set to 4, NP is set to 1000, and FP is set to 0.

Note 2: Parameters are grouped in pairs. The first of the pair names the variable to be modified, whilst the second gives the new value to be assigned. Pairs may be given in any order and may be restricted to those variables to be changed.

RESPONSE FORMAT

WaveForm_SetUp SP, <sparsing>, NP, <number>, FP, <point>

EXAMPLE

The following command specifies that every 3rd data point (SP=3) starting at address 200 should be transferred:

Command message:
WFSU SP, 3, FP, 200

RELATED COMMANDS

WAVEFORM
DESCRIPTION

The WAIT command prevents the instrument from analyzing new commands until the oscilloscope has completed the current acquisition.

The instrument will be waiting for trigger or the limit time over (if we set it) or the device time out when we sent this command.

COMMAND SYNTAX

WAIT <time>

Note: This command have two ways to use. One sets the limited time, another one doesn’t set the limited time.

EXAMPLE

If we move the trigger level of the source to the position where the trace isn’t triggered. Then we send an ARM command to set the trigger mode to single. Finally we send the WAIT command. The instrument will be waiting for triggering until the time over (if we set it) or time out.

If we move the trigger level of the source, and the instrument is triggered. Then we send an ARM command to set the trigger mode to single. Finally we send the WAIT command. The WAIT command will be finished if we send a FRTR for triggering.

Command message:
WAIT
DESCRIPTION

The XY_DISPLAY command enables or disables to display the XY format.

The response to the XY_DISPLAY? query indicates whether the XY format display is enabled.

COMMAND SYNTAX

```
XY_DISPLAY <state>
<state>: = \{ON, OFF\}
```

QUERY SYNTAX

```
XY_DISPLAY?
```

RESPONSE FORMAT

```
XY_DISPLAY <state>
```

EXAMPLE

The following command enables to display the XY format:

Command message:

```
XYDS
```
Index

A
ALL_STATUS?, ALST?, Query,
ARM_ACQUISITION, ARM, Command,
ATTENUATION, ATTN, Command/Query,
AUTO_CALIBRATE, ACAL, Command/Query,
AUTO_SETUP, ASET, Command,
AUTO_TYPESET, AUTTS, Command/Query,
AVERAGE_ACQUIRE, AVGA, Command/Query,

B
BANDWIDTH_LIMIT, BWL, Command/Query,
BUZZER, BUZZ, Command,

C
CAL?, Query,
CLS, Command,
CMR?, Query,
COMM_NET, CONET, Command/Query,
COUPLING, CPL, Command/Query,
CURSOR_SET, CRST, Command/Query,
CURSOR_VALUE?, CRVA?, Query,
CURSOR_AUTO, CRAU, Command,
CSV_SAVE, CSVS, Command/Query,
COUNTER, COUN, Command/Query,
CYMOMETER, CYMT, Query,

D
DATE, Command/Query,
DDR?, Query,
DEFINE, DEF, Command/Query,
DELETE_FILE, DELF, Command,
DIRECTORY, DIR, Command/Query,
DOT_JOIN, DTJN, Command/Query,

E
ESE, Command/Query,
ESR?, Query,
EXR?, Query,
F
FILENAME, FLNM, Command/Query,
FORMAT_VDISK, FVDISK, Query,
FILTER, FILT, Command/Query,
FILT_SET, FILTS, Command/Query,
FFT_WINDOW, FFTW, Command/Query,
FFT_ZOOM, FFTZ, Command/Query,
FFT_SCALE, FFTS, Command/Query,
FFT_FULLSCREEN, FFTF, Command/Query,

G
GRID_DISPLAY, GRDS, Command/Query,
GCSV, GET_CSV, Query,

H
HARDCOPY_SETUP, HCSU,
HOR_MAGNIFY, HMAG, Command/Query,
HOR_POSITION, HPOS, Command/Query,

I
IDN?, Query,
INTENSITY, INTS, Command/Query,
INTERLEAVED, ILVD, Command/Query,
INR, INR, Query,
INVERT_SET, INVS, Command/Query,

L
LOCK, Command/Query,

M
MENU, MENU, Command/Query,
MATH_VERT_POS, MTVP, Command/Query,
MATH_VERT_DIV, MTVD, Command/Query,
MEASURE_DELY, MEAD, Command/Query,

O
OFFSET, OFST, Command/Query,
OPC, Command/Query,

P
PARAMETER_CLR, PACL, Command,
PARAMETER_CUSTOM, PACU, Command/Query,
PARAMETER_VALUE?, PAVA?, Query,
PEAK_DETECT, PDET, Command/Query,
PERSIST, PERS, Command/Query,
PERSIST_SETUP, PESU, Command/Query,
 PANEL_SETUP, PNSU, Command/Query,
PF_DISPLAY, PFDS, Command/Query,
PF_SET, PFST, Command/Query,
PF_SAVELOAD, PFSL, Command,
PF_CONTROL, PFCT, Command/Query,
PF_CREATEM, PFCM, Command,
PF_DATEDIS, PFDD, Query,

R
RCL, Command,
RECALL, REC, Command,
RECALL_PANEL, RCPN, Command,
RST, Command,
REF_SET, REFS, Command/Query,

S
SAV, Command,
SCREEN_DUMP, SCDP, Command/Query,
SRE, Command/Query,
STB? Query,
STOP, Command,
STORE, STO, Command,
STORE_PANEL, STPN, Command,
STORE_SETUP, STST, Command/Query,
SAMPLE_STATUS, SAST/ Query,
SAMPLE_RATE, SARA/ Query,
SAMPLE_NUM, SANU/ Query,
SKEW, SKEW, Command,
SETTO%50, SET50, Command,
SINXX_SAMPLE, SXSA, Command/Query,

T
TIME_DIV, TDIV, Command/Query,
TRACE, TRA, Command/Query,
TRG, Command,
TRIG_COUPLING, TRCP, Command/Query,
TRIG_DELAY, TRDL, Command/Query,
TRIG_LEVEL, TRLV, Command/Query,
TRIG_MODE, TRMD, Command/Query,
TRIG_SELECT, TRSE, Command/Query,
TRIG_SLOPE, TRSL, Command/Query,

U
UNIT, UNIT, Command/Query,

V
VOLT_DIV, VDIV, Command/Query,
VERTICAL, VTCL, Command/Query,

W
WAIT, Command,
WAVEFORM, WF, Command/Query,
WAVEFORM_SETUP, WFSU, Command/Query,

X
XY_DISPLAY, XYDS, Command/Query,